The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.
The increasing use of advanced nucleic acid sequencing technologies for clinical diagnostics and therapeutics has made vital understanding the costs of performing these procedures and their value to patients, providers, and payers. The Association for Molecular Pathology invested in a cost and value analysis of specific genomic sequencing procedures (GSPs) newly coded by the American Medical Association Current Procedural Terminology Editorial Panel. Cost data and work effort, including the development and use of data analysis pipelines, were gathered from representative laboratories currently performing these GSPs. Results were aggregated to generate representative cost ranges given the complexity and variability of performing the tests. Cost-impact models for three clinical scenarios were generated with assistance from key opinion leaders: impact of using a targeted gene panel in optimizing care for patients with advanced non-small-cell lung cancer, use of a targeted gene panel in the diagnosis and management of patients with sensorineural hearing loss, and exome sequencing in the diagnosis and management of children with neurodevelopmental disorders of unknown genetic etiology. Each model demonstrated value by either reducing health care costs or identifying appropriate care pathways. The templates generated will aid laboratories in assessing their individual costs, considering the value structure in their own patient populations, and contributing their data to the ongoing dialogue regarding the impact of GSPs on improving patient care.
Activation of the p75 neurotrophin receptor leads to a variety of effects within the nervous system, including neuronal apoptosis. Both c-Jun N-terminal kinase (JNK) and the tumor suppressor p53 have been reported to be critical for this receptor to induce cell death; however, the mechanisms by which p75 activates these pathways is undetermined. Here we report that the neurotrophin receptor interacting factor (NRIF) is necessary for p75-dependent JNK activation and apoptosis. Upon nerve growth factor withdrawal, nrif؊/؊ sympathetic neurons underwent apoptosis, whereas p75-mediated death was completely abrogated. The lack of cell death correlated with a lack of JNK activation in the nrif؊/؊ neurons, suggesting that NRIF is a selective mediator for p75-dependent JNK activation and apoptosis. Moreover, we document that NRIF expression is sufficient to induce cell death through a mechanism that requires p53. Taken together, these results establish NRIF as an essential component of the p75 apoptotic pathway.The p75 neurotrophin receptor is a pleiotropic signaling molecule that regulates cellular survival, neurite outgrowth, and myelin formation (1). This founding member of the tumor necrosis factor receptor superfamily can directly bind all of the neurotrophins, including nerve growth factor (NGF), 1 brainderived neurotrophic factor (BDNF), and neurotrophin-3 and -4 (NT-3, NT-4), but it also functions as a co-receptor in a variety of protein complexes. p75 can interact with TrkA to form a high affinity neurotrophin binding site (2) and enhance survival signaling (3). It can also associate with the Nogo receptor and Lingo-1 and, upon interaction with myelin proteins, block neurite outgrowth (4, 5), and, together with Sortilin, the neurotensin 3 receptor, it binds the proform of NGF and initiates apoptosis (6). The divergent cellular responses depend on the receptor complex as well as the cellular context. For example, sympathetic neurons of superior cervical ganglia undergo a period of programmed cell death during ontogenesis, and NGF, supplied by the tissues innervated, prevents the loss of these neurons through binding to a p75-TrkA complex (7). In contrast, specific activation of p75 (8) or a p75-sortilin complex (6) induces apoptosis in the neurons. Genetic deletion of p75 prevents the normal period of cell death in the developing superior cervical ganglia (8, 9), thus demonstrating the key role of this receptor in regulating the survival of this neuronal population.How p75 initiates this variety of biological effects is not well understood; however, the stress kinase c-Jun N-terminal kinase, JNK, has been suggested to play a role in mediating this apoptotic signal. Neurotrophin activation of JNK through p75 correlates with the induction of cell death (43) and inhibition of the kinase prevents the receptor from killing (23, 10). Interestingly, c-Jun, the downstream target of the kinase, is not required for the receptor to activate apoptosis (11); however, other JNK substrates have been implicated in the p75 death ...
A majority of reported human immunodeficiency virus type 1 integrase (HIV-1 IN) inhibitors are polyhydroxylated aromatic compounds containing two phenyl rings separated by aliphatic or aromatic linkers. Most inhibitors possessing a catechol moiety exhibit considerable toxicity in cellular assays. In an effort to identify nonhydroxylated analogs, a series of aromatic sulfones were tested for their ability to inhibit the 3' processing and strand transfer steps that are necessary for HIV replication. Several aromatic sulfones have previously been shown to have moderate activity against HIV-1 reverse transcriptase in cellular assays; however, their inhibitory potencies against IN have not been explored. In the present study, the inhibitory effect of a series of sulfones and sulfonamides against IN was determined. Among 52 diaryl sulfones tested, 4 were determined to be highly potent (50% inhibitory concentration [IC50], 0.8 to 10 micrograms/ml), 5 had good potencies (IC50, 11 to 50 micrograms/ml), 10 showed moderate potencies (IC50, 51 to 100 micrograms/ml), and 33 were inactive (IC50, > 100 micrograms/ml) against IN. All of the active compounds exhibited similar potencies against HIV-2 IN. Sulfa drugs, used extensively in treating Pneumocystis carinii pneumonia, a leading cause of morbidity and mortality in AIDs patients, were also examined. Among 19 sulfonamides tested, sulfasalazine (IC50, 50 micrograms/ml) was the most potent. We conclude that potent inhibitors of IN can be designed based on the results presented in this study.
Neurotrophin signaling through the p75 receptor regulates apoptosis within the nervous system both during development and in response to injury. Whereas a number of p75 interacting factors have been identified, how these upstream factors function in a coordinated manner to mediate receptor signaling is still unclear. Here, we report a functional interaction between TRAF6 and the neurotrophin receptor interacting factor (NRIF), two proteins known to associate with the intracellular domain of the p75 neurotrophin receptor. The association between NRIF and TRAF6 was direct and occurred with both endogenous and ectopically expressed proteins. A KRAB repressor domain of NRIF and the carboxyl-terminal, receptor-binding region of TRAF6 were required for the interaction. Co-expression of TRAF6 increased the levels of NRIF protein and induced its nuclear translocation. Reciprocally, NRIF enhanced TRAF6-mediated activation of the c-Jun NH 2 -terminal kinase (JNK) by 3-fold, while only modestly increasing the stimulation of NF-B. The expression of both NRIF and TRAF6 was required for reconstituting p75 activation of JNK in HEK293 cells, whereas NRIF mutants lacking the TRAF6 interaction domain were unable to substitute for the full-length protein in facilitating activation of the kinase. These results suggest that NRIF and TRAF6 functionally interact to facilitate neurotrophin signaling through the p75 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.