PURPOSE Collecting patient-reported outcomes (PROs) can improve symptom control and quality of life, enhance doctor-patient communication, and reduce acute care needs for patients with cancer. Digital solutions facilitate PRO collection, but without robust electronic health record (EHR) integration, effective deployment can be hampered by low patient and clinician engagement and high development and deployment costs. The important components of digital PRO platforms have been defined, but procedures for implementing integrated solutions are not readily available. METHODS As part of the NCI's IMPACT consortium, six health care systems partnered with Epic to develop an EHR-integrated, PRO-based electronic symptom management program (eSyM) to optimize postoperative recovery and well-being during chemotherapy. The agile development process incorporated user-centered design principles that required engagement from patients, clinicians, and health care systems. Whenever possible, the system used validated content from the public domain and took advantage of existing EHR capabilities to automate processes. RESULTS eSyM includes symptom surveys on the basis of the PRO-Common Terminology Criteria for Adverse Events (PRO-CTCAE) plus two global wellness questions; reminders and symptom self-management tip sheets for patients; alerts and symptom reports for clinicians; and population management dashboards. EHR dependencies include a secure Health Insurance Portability and Accountability Act-compliant patient portal; diagnosis, procedure and chemotherapy treatment plan data; registries that identify and track target populations; and the ability to create reminders, alerts, reports, dashboards, and charting shortcuts. CONCLUSION eSyM incorporates validated content and leverages existing EHR capabilities. Build challenges include the innate technical limitations of the EHR, the constrained availability of site technical resources, and sites' heterogenous EHR configurations and policies. Integration of PRO-based symptom management programs into the EHR could help overcome adoption barriers, consolidate clinical workflows, and foster scalability and sustainability. We intend to make eSyM available to all Epic users.
Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.
Background To identify additional at‐risk groups for lung cancer screening, which targets persons with a long history of smoking and thereby misses younger or nonsmoking cases, the authors evaluated germline pathogenic variants (PVs) in patients with lung adenocarcinoma for an association with an accelerated onset. Methods The authors assembled a retrospective cohort (1999‐2018) of oncogenetic clinic patients with lung adenocarcinoma. Eligibility required a family history of cancer, data on smoking, and a germline biospecimen to screen via a multigene panel. Germline PVs (TP53/EGFR, BRCA2, other Fanconi anemia [FA] pathway genes, and non‐FA DNA repair genes) were interrogated for associations with the age at diagnosis via an accelerated failure time model. Results Subjects (n = 187; age, 28‐89 years; female, 72.7%; Hispanic, 11.8%) included smokers (minimum of 5 pack‐years; n = 65) and nonsmokers (lighter ever smokers [n = 18] and never smokers [n = 104]). Overall, 26.7% of the subjects carried 1 to 2 germline PVs: TP53 (n = 5), EGFR (n = 2), BRCA2 (n = 6), another FA gene (n = 11), or another DNA repair gene (n = 28). After adjustment for smoking, sex, and ethnicity, the diagnosis of lung adenocarcinoma was accelerated 12.2 years (95% confidence interval [CI], 2.5‐20.6 years) by BRCA2 PVs, 9.0 years (95% CI, 0.5‐16.5 years) by TP53/EGFR PVs, and 6.1 years (95% CI, –1.0 to 12.6 years) by PVs in other FA genes. PVs in other DNA repair genes showed no association. Germline associations did not vary by smoking. Conclusions Among lung adenocarcinoma cases, germline PVs (TP53, EGFR, BRCA2, and possibly other FA genes) may be associated with an earlier onset. With further study, the criteria for lung cancer screening may need to include carriers of high‐risk PVs, and findings could influence precision therapy and reduce lung cancer mortality by earlier stage diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.