Atomic force microscopy (AFM) was used to probe the effects of pH, ionic strength, and the presence of bacterial surface polymers on interaction forces between individual, negatively charged bacteria and silicon nitride. Bacterial surface polymers dominated interactions between bacteria and AFM silicon nitride tips. The measured forces were represented well by an electrosteric repulsion model accounting for repulsion between the tip and bacterial polymers but were much larger in magnitude and extended over longer distances (100's of nanometers) than predicted by DLVO theory. The equilibrium length (L o ) of the polymers was allowed to vary with solution chemistry to account for intramolecular electrostatic interactions between individual polymer units. The effects of the variables pH and ionic strength on bacterial interaction forces were investigated independently. Pseudomonas putida KT2442 was studied in 1 mM MOPS buffer at pH values of 2.2, 4.75, 7.00, and 8.67. Burkholderia cepacia G4 was studied in 1 mM MOPS buffer at pH values of 2.2, 4.75, and 6.87. Then, the pH was held constant at 4.5 or 4.75, and the ionic strength was studied in 0.01, 1, or 100 mM MOPS buffer (for each microbe). For KT2442 (in 1 mM MOPS buffer), L o increased from 230 to 750 nm as pH increased from 4.75 to 8.67. For G4 (in 1 mM MOPS buffer), L o increased from 350 nm at pH 2.2 to 1040 nm at pH 7.0. Varying the ionic strength between 0.01 and 100 mM did not affect the equilibrium length of the polymers nearly as much as pH. Partially removing polysaccharides from the bacterial surfaces resulted in lower repulsive forces that decayed much more rapidly. The magnitude of the measured forces in these experiments and the equilibrium lengths predicted by the electrosteric model are comparable to other force measurements and size estimates on polymers and polysaccharides.
Recent observational and clinical studies have raised interest in the potential health effects of cranberry consumption, an association that appears to be due to the phytochemical content of this fruit. The profile of cranberry bioactives is distinct from that of other berry fruit, being rich in A-type proanthocyanidins (PACs) in contrast to the B-type PACs present in most other fruit. Basic research has suggested a number of potential mechanisms of action of cranberry bioactives, although further molecular studies are necessary. Human studies on the health effects of cranberry products have focused principally on urinary tract and cardiovascular health, with some attention also directed to oral health and gastrointestinal epithelia. Evidence suggesting that cranberries may decrease the recurrence of urinary tract infections is important because a nutritional approach to this condition could lower the use of antibiotic treatment and the consequent development of resistance to these drugs. There is encouraging, but limited, evidence of a cardioprotective effect of cranberries mediated via actions on antioxidant capacity and lipoprotein profiles. The mixed outcomes from clinical studies with cranberry products could result from interventions testing a variety of products, often uncharacterized in their composition of bioactives, using different doses and regimens, as well as the absence of a biomarker for compliance to the protocol. Daily consumption of a variety of fruit is necessary to achieve a healthy dietary pattern, meet recommendations for micronutrient intake, and promote the intake of a diversity of phytochemicals. Berry fruit, including cranberries, represent a rich source of phenolic bioactives that may contribute to human health.
The role of lipopolysaccharides (LPS) in bacterial adhesion was investigated via atomic force microscopy (AFM). Adhesion between a silicon nitride tip and Escherichia coli JM109 was measured in water and 0.01 M phosphate-buffered saline (PBS) on untreated cells and on a sample of E. coli treated with 100 mM ethylenediaminetetraacetic acid (EDTA), which removes approximately 80% of the LPS molecules. LPS removal decreased the adhesion affinity between the bacterial cells and the AFM tip from -2.1 +/- 1.8 to -0.40 +/- 0.36 nN in water and from -0.74 +/- 0.44 to -0.46 +/- 0.23 nN in 0.01 M PBS (statistically different, Mann-Whitney rank sum test, P < 0.01). The distributions of adhesion affinities between E. coli LPS macromolecules and the AFM tip could be described by gamma distribution functions. Direct measurements of the adhesive force between E. coil and a surface were compared with adhesion in batch and column experiments, and agreement was observed between the influences of LPS on adhesion in each system. Bacterial batch retention to glass or in packed beds to quartz sand decreased after LPS removal. When interaction forces were measured during the approach of the AFM tip to a bacterium, steric repulsive forces were seen for both treated and untreated cells, but the repulsion was greater when the LPS was intact A model for steric repulsion predicted a reduction of the equilibrium length of the surface polymers from 242 to 64 nm in water and from 175 to 81 nm in buffer, after removal of a portion of the LPS. DLVO calculations based on conventional and soft-particle DLVO theories predicted higher energy barriers to adhesion for all surfaces after LPS removal, consistent with experimental findings. Adhesion forces between the AFM tip and bacterial polymers were correlated with bacterial attachment and retention, while measurements of interaction forces during the approach of the AFM tip to the bacterium did not correlate with subsequent adhesion behavior to glass or quartz sand.
Biopolymers produced extracellularly by Pseudomonas putida KT2442 were examined via atomic force microscopy (AFM) and single molecule force spectroscopy. Surface biopolymers were probed in solutions with added salt concentrations ranging from that of pure water to 1 M KCl. By studying the physicochemical properties of the polymers over this range of salt concentrations, we observed a transition in the steric and electrostatic properties and in the conformation of the biopolymers that were each directly related to bioadhesion. In low salt solutions, the electrophoretic mobility of the bacterium was negative, and large theoretical energy barriers to adhesion were predicted from soft-particle DLVO theory calculations. The brush layer in low salt solution was extended due to electrostatic repulsion, and therefore, steric repulsion was also high (polymers extended 440 nm from surface in pure water). The extended polymer brush layer was “soft”, characterized by the slope of the compliance region of the AFM approach curves (−0.014 nN/nm). These properties resulted in low adhesion between biopolymers and the silicon nitride AFM tip. As the salt concentration increased to ≥0.01 M, a transition was observed toward a more rigid and compressed polymer brush layer, and the adhesion forces increased. In 1 M KCl, the polymer brush extended 120 nm from the surface and the rigidity of the outer cell surface was greater (slope of the compliance region = −0.114 nN/nm). A compressed and more rigid polymer layer, as well as a less negative electrophoretic mobility for the bacterium, resulted in higher adhesion forces between the biopolymers and the AFM tip. Scaling theories for polyelectrolyte brushes were also used to explain the behavior of the biopolymer brush layer as a function of salt concentration.
The effect of fluid velocity on the transport of motile and nonmotile bacteria was studied in saturated soil columns using radiolabeled cells. According to colloid filtration theory, decreasing the bulk fluid velocity in a porous medium increases the number of collisions of passive colloids with particles and, therefore, should result in increased colloid retention in porous media. However, for motile cells, there was a variation in cell retention significantly different from that predicted by filtration theory at low fluid velocities, leading to the conclusion that filtration theory is not applicable for this motile bacterial strain at low fluid velocities. As the pore velocity was decreased from 120 to 0.56 m/day, the fractional retention of motile cells (Pseudomonas florescens P17) decreased by 65%, and the collision efficiency (R) defined as the ratio of particles that attach to soil grains to particles that collide with the soil (calculated using a filtration equation) decreased from 0.37 (120 m/day) to 0.003 (0.56 m/day). For passive colloids, the fractional retention (if R is a constant equal to 0.01) would increase by more than 800% over this same velocity range. To support our conclusion that cell motility was the factor producing this change from filtration theory, we rendered P17 cells nonmotile and tested this strain and a second nonmotile strain [Burkholderia (Pseudomonas) cepacia G4] under the same conditions. Collision efficiencies for both nonmotile suspensions were constant. For nonmotile P17, R was equal to 0.018 ( 0.003 (0.56-590 m/day). Over a wide velocity range for nonmotile G4, R was equal to 0.22 ( 0.067 (11-560 m/day). Swimming cells were presumably able to avoid sticking to soil grains at low fluid velocities, but at high fluid velocities, cell motility did not reduce attachment. Two additional factors known to affect cell transport (solution ionic strength and cell concentration) were also examined with these two strains in porous media. Decreasing the ionic strength from 4.14 to 0.0011 mM (at a constant pH) decreased cell retention for motile P17 by 39 ( 12%, but this is less of a reduction than is typically observed for nonmotile strains. Increasing the cell concentrations of motile P17 increased the overall retention of cells, suggesting that previously deposited cells provided a more favorable surface for adhesion than the native soil (ripening). In contrast, increasing the cell concentrations of G4 resulted in lower retention, suggesting that deposited cells provided a less favorable collector surface (blocking). These results need to be further investigated with other motile and nonmotile species. However, our results do suggest that wider dispersal of cells during bioaugmentation than previously thought possible may be achieved by using a combination of motile cells, low pumping velocities, and low ionic strength solutions. Optimal cell concentrations to use for in situ bioaugmentation of contaminated soil will depend on the adhesion of the bacterial strains for soil grains and w...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.