Casein kinase I (CKI) is an essential component of the biological clock, phosphorylating PER proteins, and in doing so regulating their turnover and nuclear entry in oscillator cells of the suprachiasmatic nucleus (SCN). Although hereditary decreases in PER phosphorylation have been well characterized, little is known about the consequences of acute enzyme inhibition by pharmacological means. A novel reagent, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), proved to be both a potent (IC 50 ϭ 7.7 Ϯ 2.2 nM) and selective (Ͼ30-fold with respect to 42 additional kinases) inhibitor of CKI in isolated enzyme preparations; in transfected whole cell assays, it caused a concentrationrelated redistribution of nuclear versus cytosolic PER. When tested in free-running animals, 50 mg/kg s.c. PF-670462 produced robust phase delays when dosed at circadian time (CT)9 (Ϫ1.97 Ϯ 0.17 h). Entrained rats dosed in normal light-dark (LD) and then released to constant darkness also experienced phase delays that were dose-and time of dosing-dependent. PF-670462 yielded only phase delays across the circadian cycle with the most sensitive time at CT12 when PER levels are near their peak in the SCN. Most importantly, these druginduced phase delays persisted in animals entrained and maintained in LD throughout the entire experiment; re-entrainment to the prevailing LD required days in contrast to the rapid elimination of the drug (t 1/2 ϭ 0.46 Ϯ 0.04 h). Together, these results suggest that inhibition of CKI yields a perturbation of oscillator function that forestalls light as a zeitgeber, and they demonstrate that pharmacological tools such as PF-670462 may yield valuable insight into clock function.Circadian behavior is mediated by a timed sequence of intracellular events, genomic in nature, occurring in mammals within so-called pacemaker cells of the suprachiasmatic nucleus (SCN) (Antle and Silver, 2005). Here, rhythmicity relies on a common theme of precisely regulated gene transcription and translation as a means to perpetuate cycling, and in doing so, to dictate the timing of downstream events (Reppert and Weaver, 2001; for review, see Schibler, 2006, among others). Clock-related proteins rise and fall in concentration as a consequence of nuclear and cytosolic feedback loops, adjusted daily to maintain reproducible cycling timed at roughly 24-h intervals. Light is the primary zeitgeber, or "time-giver", in this process, and its actions on loop dynamics are thought to comprise the most important external influence on pacemaker function.In its simplest conception, the oscillations of the clock can run using four genes, Period (Per1, Per2) and Cryptochrome (Cry1, Cry2), that are activated in early circadian day by heterodimeric complexes of CLOCK and BMAL1 (Griffin et al., 1999;Kume et al., 1999;Cermakian and Boivin, 2003). Translated PER partners in the cytoplasm with CRY, the resultant heterodimer, readily gaining nuclear entry and opposing activation by Clock and BMAL1. A feedback loop is...
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin þ perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.