A synthesis methodology is demonstrated to produce MoS2 nanoparticles with an expanded atomic lamellar structure that are ideal for Faradaic‐based capacitive charge storage. While much of the work on MoS2 focuses on the high capacity conversion reaction, that process is prone to poor reversibility. The pseudocapacitive intercalation‐based charge storage reaction of MoS2 is investigated, which is extremely fast and highly reversible. A major challenge in the field of pseudocapacitive‐based energy storage is the development of thick electrodes from nanostructured materials that can sustain the fast inherent kinetics of the active nanocrystalline material. Here a composite electrode comprised of a poly(acrylic acid) binder, carbon fibers, and carbon black additives is utilized. These electrodes deliver a specific capacity of 90 mAh g−1 in less than 20 s and can be cycled 3000 times while retaining over 80% of the original capacity. Quantitative kinetic analysis indicates that over 80% of the charge storage in these MoS2 nanocrystals is pseudocapacitive. Asymmetric full cell devices utilizing a MoS2 nanocrystal‐based electrode and an activated carbon electrode achieve a maximum power density of 5.3 kW kg−1 (with 6 Wh kg−1 energy density) and a maximum energy density of 37 Wh kg−1 (with 74 W kg−1power density).
This study aims to provide physical interpretations of electrochemical impedance spectroscopy (EIS) measurements for redox active electrodes in a three-electrode configuration. To do so, a physicochemical transport model was used accounting for (i) reversible redox reactions at the electrode/electrolyte interface, (ii) charge transport in the electrode, (iii) ion intercalation into the pseudocapacitive electrode, (iv) electric double layer formation, and (v) ion electrodiffusion in binary and symmetric electrolytes. Typical Nyquist plots generated by EIS of redox active electrodes were reproduced numerically for a wide range of electrode electrical conductivity, electrolyte thickness, redox reaction rate constant, and bias potential. The electrode, bulk electrolyte, charge transfer, and mass transfer resistances could be unequivocally identified from the Nyquist plots. The electrode and bulk electrolyte resistances were independent of the bias potential, while the sum of the charge and mass transfer resistances increased with increasing bias potential. Finally, these results and interpretation were confirmed experimentally for LiNi0.6Co0.2Mn0.2O2 and MoS2 electrodes in organic electrolytes.
Pseudocapacitors with nondiffusion-limited charge storage mechanisms allow for fast kinetics that exceed conventional battery materials. It has been demonstrated that nanostructuring conventional battery materials can induce pseudocapacitive behavior. In our previous study, we found that assemblies of metallic 1T MoS2 nanocrystals show faster charge storage compared to the bulk material. Quantitative electrochemistry demonstrated that the current response is capacitive. In this work, we perform a series of operando X-ray diffraction studies upon electrochemical cycling to show that the high capacitive response of metallic 1T MoS2 nanocrystals is due to suppression of the standard first-order phase transition. In bulk MoS2, a phase transition between 1T and triclinic phases (Li x MoS2) is observed during lithiation and delithiation in both the galvanostatic traces (as distinctive plateaus) and the X-ray diffraction patterns with the appearance of the additional peaks. MoS2 nanocrystal assemblies, on the other hand, show none of these features. We hypothesize that the reduced MoS2 crystallite size suppresses the first-order phase transition and gives rise to solid solution-like behavior, potentially due to the unfavorable formation of nucleation sites in confined spaces. Overall, we find that nanostructuring MoS2 suppresses the 1T-triclinic phase transition and shortens Li-ion diffusion path lengths, allowing MoS2 nanocrystal assemblies to behave as nearly ideal pseudocapacitors.
Poly(3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HT-CNT serves as a surface coating for the cathode material LiNi0.8Co0.15Al0.05O2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase layer and preventing intergranular cracking in the NCA particles. The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g–1 obtained after 1000 cycles at 16 C, a value that is 4 times greater than that achieved in the control electrode.
Tin metal is an attractive negative electrode material to replace graphite in Li-ion batteries due to its high energy density. However, tin undergoes a large volume change upon alloying with Li, which pulverizes the particles, and ultimately leads to short cycling lifetimes. Nevertheless, nanoporous materials have been shown to extend battery life well past what is observed in nonporous material. Despite the exciting potential of porous alloying anodes to significantly increase the energy density in Li-ion batteries, the fundamental physics of how nanoscale architectures accommodate the electrochemically induced volume changes are poorly understood. Here, operando transmission X-ray microscopy has been used to develop an understanding of the mechanisms that govern the enhanced cycling stability in nanoporous tin. We found that in comparison to dense tin, nanoporous tin undergoes a 6-fold smaller areal expansion after lithiation, as a result of the internal porosity and unique nanoscale architecture. The expansion is also more gradual in nanoporous tin compared to the dense material. The nanoscale resolution of the microscope used in this study is ∼30 nm, which allowed us to directly observe the pore structure during lithiation and delithiation. We found that nanoporous tin remains porous during the first insertion and desinsertion cycle. This observation is key, as fully closed pores could lead to mechanical instability, electrolyte inaccessibility, and short lifetimes. While tin was chosen for this study because of its high X-ray contrast, the results of this work should be general to other alloy-type systems, such as Si, that also suffer from volume change based cycling degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.