IMPORTANCEThe mechanisms behind the phenotypic variability and reduced penetrance in autosomal recessive Stargardt disease (STGD1), often a blinding disease, are poorly understood. Identification of the unknown disease modifiers can improve patient and family counseling and provide valuable information for disease management.OBJECTIVE To assess the association of incompletely penetrant ABCA4 alleles with sex in STGD1.DESIGN, SETTING, AND PARTICIPANTS Genetic data for this cross-sectional study were obtained from 2 multicenter genetic studies of 1162 patients with clinically suspected STGD1. Unrelated patients with genetically confirmed STGD1 were selected. The data were collected from June 2016 to June 2019, and post hoc analysis was performed between July 2019 and January 2020.MAIN OUTCOMES AND MEASURES Penetrance of reported mild ABCA4 variants was calculated by comparing the allele frequencies in the general population (obtained from the Genome Aggregation Database) with the genotyping data in the patient population (obtained from the ABCA4 Leiden Open Variation Database). The sex ratio among patients with and patients without an ABCA4 allele with incomplete penetrance was assessed.RESULTS A total of 550 patients were included in the study, among which the mean (SD) age was 45.7 (18.0) years and most patients were women (311 [57%]). Five of the 5 mild ABCA4 alleles, including c.5603A>T and c.5882G>A, were calculated to have incomplete penetrance. The women to men ratio in the subgroup carrying c.5603A>T was 1.7 to 1; the proportion of women in this group was higher compared with the subgroup not carrying a mild allele (difference, 13%; 95% CI, 3%-23%; P = .02). The women to men ratio in the c.5882G>A subgroup was 2.1 to 1, and the women were overrepresented compared with the group carrying no mild allele (difference, 18%; 95% CI, 6%-30%; P = .005).CONCLUSIONS AND RELEVANCE This study found an imbalance in observed sex ratio among patients harboring a mild ABCA4 allele, which concerns approximately 25% of all patients with STGD1, suggesting that STGD1 should be considered a polygenic or multifactorial disease rather than a disease caused by ABCA4 gene mutations alone. The findings suggest that sex should be considered as a potential disease-modifying variable in both basic research and clinical trials on STGD1.
This resource is a valuable tool for investigating the aetiology of inherited retinal diseases. As new molecular technologies are translated into clinical applications, this well-governed repository of clinical and genetic information will become increasingly relevant for tasks such as identifying candidates for gene-specific clinical trials.
BackgroundLeber congenital amaurosis (LCA) is a severe visual impairment responsible for infantile blindness, representing ~5% of all inherited retinal dystrophies. LCA encompasses a group of heterogeneous disorders, with 24 genes currently implicated in pathogenesis. Such clinical and genetic heterogeneity poses great challenges for treatment, with personalized therapies anticipated to be the best treatment candidates. Unraveling the individual genetic etiology of disease is a prerequisite for personalized therapies, and could identify potential treatment candidates, inform patient management, and discriminate syndromic forms of disease.MethodsWe have genetically analyzed 45 affected and 82 unaffected individuals from 34 unrelated LCA pedigrees using predominantly next‐generation sequencing and Array CGH technology.ResultsWe present the molecular findings for an Australian LCA cohort, sourced from the Australian Inherited Retinal Disease Registry & DNA Bank. CEP290 and GUCY2D mutations, each represent 19% of unrelated LCA cases, followed by NMNAT1 (12%). Genetic subtypes were consistent with other reports, and were resolved in 90% of this cohort.ConclusionThe high resolution rate achieved, equivalent to recent findings using whole exome/genome sequencing, reflects the progression from hypothesis (LCA Panel) to non‐hypothesis (RD Panel) testing and, coupled with Array CGH analysis, is a highly effective first‐tier test for LCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.