The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities
Five general types of nozzles and nine configurations were tested in a water tunnel and using gas pressure analysis to determine their effectiveness at reducing entrained air from the outside environment during laser surface alloying. Two orientations with regard to the work piece were employed: The optics and nozzle being normal, the optics and nozzle being at a 15° oblique angle. Both argon and nitrogen were studied. In the impingement region, they produced roughly the same results regardless of the nozzle configuration. The change in orientation of the nozzle, however, had an effect. For 0° orientation the 7° simple nozzle with shroud is best and at 15° orientation the conic nozzle is the best when used in the reverse processing direction. A shroud surrounding the nozzles had minimal influence on the reduction of oxygen (approximately 1%) at normal and oblique incidence. The impingement region of the gas was found to be adequate in size for all of the cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.