SUMMARY Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.
SUMMARYAs current research illuminates the dynamic interplay between the innate and acquired immune responses, the interaction and communication between these two arms has yet to be fully investigated. Polymorphonuclear neutrophils (PMNs) and interferon-c (IFN-c) are known critical components of innate and acquired immunity, respectively. However, recent studies have demonstrated that these two components are not entirely isolated. Treatment of PMNs with IFN-c elicits a variety of responses depending on stimuli and environmental conditions. These responses include increased oxidative burst, differential gene expression, and induction of antigen presentation. Many of these functions have been overlooked in PMNs, which have long been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports, the old definition of the PMN is in need of an update, as these cells have demonstrated their ability to mediate the transition between the innate and acquired immune responses.
Pseudomonas aeruginosa is a prevalent opportunistic human pathogen that, like other Gram-negative pathogens, secretes outer membrane vesicles. Vesicles are complex entities composed of a subset of envelope lipid and protein components that have been observed to interact with and be internalized by host cells. This study characterized the inflammatory responses to naturally produced P. aeruginosa vesicles and determined the contribution of vesicle Toll-like receptor (TLR) ligands and vesicle proteins to that response. Analysis of macrophage responses to purified vesicles by real-time PCR and enzyme-linked immunosorbent assay identified proinflammatory cytokines upregulated by vesicles. Intact vesicles were shown to elicit a profoundly greater inflammatory response than the response to purified lipopolysaccharide (LPS). Both TLR ligands LPS and flagellin contributed to specific vesicle cytokine responses, whereas the CpG DNA content of vesicles did not. Neutralization of LPS sensing demonstrated that macrophage responses to the protein composition of vesicles required the adjuvantlike activity of LPS to elicit strain specific responses. Protease treatment to remove proteins from the vesicle surface resulted in decreased interleukin-6 and tumor necrosis factor alpha production, indicating that the production of these specific cytokines may be linked to macrophage recognition of vesicle proteins. Confocal microscopy of vesicle uptake by macrophages revealed that vesicle LPS allows for binding to macrophage surfaces, whereas vesicle protein content is required for internalization. These data demonstrate that macrophage sensing of both LPS and protein components of outer membrane vesicles combine to produce a bacterial strain-specific response that is distinct from those triggered by individual, purified vesicle components.The innate immune response to Gram-negative bacteria is dominated by recognition of lipopolysaccharide (LPS). LPS is sensed by the Toll-like receptor 4 (TLR4) complex, and numerous studies have focused on both how LPS sensitivity drives effective inflammatory responses, leading to the clearance of infection, as well as how uncontrolled TLR4 signaling can lead to LPS toxicity and play a role in septic shock (20,39,48
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.