The estuarine crocodile (Crocodylus porosus) is the apex-predator in waterways and coastlines throughout south-east Asia and Australasia. C. porosus pose a potential risk to humans, and management strategies are implemented to control their movement and distribution. Here we used GPS-based telemetry to accurately record geographical location of adult C. porosus during the breeding and nesting season. The purpose of the study was to assess how C. porosus movement and distribution may be influenced by localised social conditions. During breeding, the females (2.92±0.013 metres total length (TL), mean ± S.E., n = 4) occupied an area<1 km length of river, but to nest they travelled up to 54 km away from the breeding area. All tagged male C. porosus sustained high rates of movement (6.49±0.9 km d−1; n = 8) during the breeding and nesting period. The orientation of the daily movements differed between individuals revealing two discontinuous behavioural strategies. Five tagged male C. porosus (4.17±0.14 m TL) exhibited a ‘site-fidelic’ strategy and moved within well-defined zones around the female home range areas. In contrast, three males (3.81±0.08 m TL) exhibited ‘nomadic’ behaviour where they travelled continually throughout hundreds of kilometres of waterway. We argue that the ‘site-fidelic’ males patrolled territories around the female home ranges to maximise reproductive success, whilst the ‘nomadic’ males were subordinate animals that were forced to range over a far greater area in search of unguarded females. We conclude that C. porosus are highly mobile animals existing within a complex social system, and mate/con-specific interactions are likely to have a profound effect upon population density and distribution, and an individual's travel potential. We recommend that impacts on socio-spatial behaviour are considered prior to the implementation of management interventions.
Underwater passive acoustic (PA) telemetry is becoming the preferred technology for investigating animal movement in aquatic systems; however, much of the current statistical tools for telemetry data were established from global positioning system (GPS)-based data. To understand the appropriateness of these tools for PA telemetry, we dual-tagged free-ranging aquatic animals that exist at the air-water interface (Crocodylus porosus, n=14). The location of each animal was simultaneously recorded over a 3-month period by fixed acoustic receivers and satellite positioning. Estimates of minimum travel distance and home range (HR) were then calculated from the PA and GPS datasets. The study revealed significant disparity between telemetry technologies in estimates of minimum travel distance and HR size. Of the five HR measures investigated, the linear distance measure produced the most comparable estimates of HR size and overlap. The kernel utilisation distribution with a reference smoothing parameter function and ad hoc function, however, produced comparable estimates when raw acoustic detections were grouped into periods when animals were within and between receiver detection fields. The study offers guidelines on how to improve the accuracy and precision of space-use estimates from PA telemetry, even in receiver arrangements with large areas of non-detection.
Examining the social behaviors of solitary species can be challenging due to the rarity in which interactions occur and the large and often inaccessible areas which these animals inhabit. As shared space-use is a prerequisite for the expression of social behaviors, we can gain insights into the social environments of solitary species by examining the degree of spatial overlap between individuals. Over a 10-year period, we examined how spatial overlap amongst 105 estuarine crocodiles Crocodylus porosus was influenced by season, sex, and movement tactic. We discovered that crocodiles displayed highly consistent spatial overlaps with conspecifics between months and across years. Furthermore, male crocodiles that exhibited a greater degree of site fidelity displayed more stable social environments, while females and males that were less site-attached had more dynamic social environments with spatial overlaps between conspecifics peaking during the mating season. Our results demonstrate how long-term tracking of multiple individuals within the same population can be used to quantify the spatial structure and social environment of cryptic and solitary species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.