The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infected more than 8,000 people across 29 countries and caused more than 900 fatalities. Based on the concept of chemical genetics, we screened 50,240 structurally diverse small molecules from which we identified 104 compounds with anti-SARS-CoV activity. Of these 104 compounds, 2 target the SARS-CoV main protease (M(pro)), 7 target helicase (Hel), and 18 target spike (S) protein-angiotensin-converting enzyme 2 (ACE2)-mediated viral entry. The EC(50) of the majority of the 104 compounds determined by SARS-CoV plaque reduction assay were found to be at low micromolar range. Three selected compounds, MP576, HE602, and VE607, validated to be inhibitors of SARS-CoV M(pro), Hel, and viral entry, respectively, exhibited potent antiviral activity (EC(50) < 10 microM) and comparable inhibitory activities in target-specific in vitro assays.
Severe acute respiratory syndrome associated coronavirus main protease (SARS-CoV Mpro) has been proposed as a prime target for anti-SARS drug development. We have cloned and overexpressed the SARS-CoV Mpro in Escherichia coli, and purified the recombinant Mpro to homogeneity. The kinetic parameters of the recombinant SARS-CoV Mpro were characterized by high performance liquid chromatography-based assay and continuous fluorescence-based assay. Two novel small molecule inhibitors of the SARS-CoV Mpro were identified by high-throughput screening using an internally quenched fluorogenic substrate. The identified inhibitors have Ki values at low microM range with comparable anti-SARS-CoV activity in cell-based assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.