Ocean acidification (OA), a consequence of anthropogenic carbon dioxide emissions, poses a serious threat to marine organisms in tropical, open-ocean, coastal, deep-sea, and high-latitude sea ecosystems. The diversity of taxonomic groups that precipitate calcium carbonate from seawater are at particularly high risk. Here we review the rapidly expanding literature concerning the biological and ecological impacts of OA on calcification, using a cross-scale, process-oriented approach. In comparison to calcification, we find that areas such as fertilization, early life-history stages, and interaction with synergistic stressors are understudied. Although understanding the long-term consequences of OA are critical, available studies are largely short-term experiments that do not allow for tests of long-term acclimatization or adaptation. Future research on the phenotypic plasticity of contemporary organisms and interpretations of performance in the context of current environmental heterogeneity of pCO2 will greatly aid in our understanding of how organisms will respond to OA in the future.
Abstract. Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other humaninduced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population-and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification and the ecological changes it portends.
The e ects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may a ect the structural complexity of four major biogenic habitats. Our analyses predict that indirect e ects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negative e ects of OA on coastal biodiversity; however, we lack evidence of the predicted biodiversity increase in systems where habitat-forming species could benefit from acidification. Overall, a combination of direct e ects and community-mediated indirect e ects will drive changes in the extent and structural complexity of biogenic habitat, which will have important ecosystem e ects. Supplementary Fig. 1). and species richness in tropical coral reefs (Fig. 1b) leads to the 38 prediction that species richness will decline with expected changes 39 in carbonate chemistry associated with OA (Fig. 1c). 40In mussel beds of the US Pacific Northwest, the percentage of 41 cover of large Mytilus mussels is projected to decline with declining 42 pH, to be replaced by species that lack the structural complexity
The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ωar < 1) along the US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ωar conditions in the natural environment. Combining field observations, high-CO2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ωar < 1. Our results suggest that both exposure magnitude and duration affect pteropod responses in the natural environment. However, observed declines in calcification performance and survival probability under high CO2 experimental conditions do not show acclimatization capacity or physiological tolerance related to history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ωar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.