Many coral reefs around the world have degraded to a degree that their present intrinsic value and utility are greatly reduced: (mass coral mortality followed by algal invasions; local depletions of reef fisheries; deficit of reef accretion compared to physical and biological erosion). Though we can sometimes identify proximal causes (outbreaks of coral predators and eroders; over-fishing; habitat destruction), we do not have a good understanding of how population, community and ecosystem structure and function differ in degraded from un-degraded reefs. The deficiencies in our understanding limit our ability to interpret the long-term significance of reef degradation, and therefore to develop scientifically based plans for conservation and management of reefs.A particular course of action, or lack of action, based on uncritical acceptance of any of the various views of temporal variability can lead to further deterioration of specific reefs. None of these viewsthat reefs are either inherently robust, inherently fragile, or inherently resilient -is true over all time-space scales. This presentation reviews various models and case studies which suggest that reefs can be knocked precipitously or move slowly from one phase (coral-dominated) to another (coral-depleted and/or algal dominated). Transitions in the other direction ('recovery') involve changes (e.g. succession) in populations and communities (of all reef-associated biota, not just sessile benthos), and in reef function (e.g. community metabolism, trophodynamics) which are of great intrinsic interest but only poorly understood.
Tropical storms (cyclones, hurricanes, or typhoons) are the most severe form of mechanical disturbance of coral reefs. In 2005, severe tropical cyclone Ingrid crossed the far northern Great Barrier Reef, a region that had not been affected by a major disturbance for several decades, and where benthic data had been collected before the cyclone crossed. This storm provided a unique opportunity to improve understanding of the extent and type of damage inflicted on inshore and offshore coral reefs along a gradient of wind speeds. Modeled maximum wind speeds ranged from 46 m s 21 (equivalent to category 4) near the path to 22 m s 21 (category 1) ,70 km to either side of the path. Surveys of 82 sites on 32 reefs along the wind gradient showed that the types and intensity of disturbance were well explained by local maximum wind speed, and by spatial and biotic factors. While offshore reefs had the deepest depth of damage, inshore reefs had the greatest rates of coral breakage and dislodgement. On a severely affected inshore reef, hard coral cover decreased about 800%, taxonomic richness decreased 250%, the density of coral recruits decreased by 30%, while massive coral cover remained unaltered. Maximum winds ,28 m s 21 for ,12 h inflicted only minor damage on any reef, but winds .33 m s 21 and .40 m s 21 caused catastrophic damage on inshore and offshore reefs, respectively. Observations from this cyclone were used to predict potential changes in storm-related coral loss under altered cyclone-intensity scenarios.
ABSTRACT. We review the evidence for multiple ecological states and the factors that create ecological resilience in coral reef ecosystems. There are natural differences among benthic communities along gradients of water temperature, light, nutrients, and organic matter associated with upwelling-downwelling and onshoreoffshore systems. Along gradients from oligotrophy to eutrophy, plant-animal symbioses tend to decrease, and the abundance of algae and heterotrophic suspension feeders and the ratio of organic to inorganic carbon production tend to increase. Human influences such as fishing, increased organic matter and nutrients, sediments, warm water, and transportation of xenobiotics and diseases are common causes of a large number of recently reported ecological shifts. It is often the interaction of persistent and multiple synergistic disturbances that causes permanent ecological transitions, rather than the succession of individual short-term disturbances. For example, fishing can remove top-level predators, resulting in the ecological release of prey such as sea urchins and coraleating invertebrates. When sea urchins are not common because of unsuitable habitat, recruitment limitations, and diseases, and when overfishing removes herbivorous fish, frondose brown algae can dominate. Terrigenous sediments carried onto reefs as a result of increased soil erosion largely promote the dominance of turf or articulated green algae. Elevated nutrients and organic matter can increase internal eroders of reef substratum and a mixture of filamentous algae. Local conservation actions that attempt to reduce fishing and terrestrial influences promote the high production of inorganic carbon that is necessary for reef growth. However, global climate change threatens to undermine such actions because of increased bleaching and mortality caused by warm-water anomalies, weakened coral skeletons caused by reduced aragonite availability in reef waters, and increased incidence of diseases in coral reef species. Consequently, many coral reefs, including those that are heavily managed, have experienced net losses in accumulated inorganic carbon in recent decades and appear likely to continue this trend in coming decades. Reefs urgently need to be managed with a view to strengthening their resilience to the increased frequency and intensity of these pressures. Ecological targets must include the restoration or maintenance of species diversity, keystone species, spatial heterogeneity, refugia, and connectivity. Achieving these goals will require unprecedented cooperative synergy between human organizations at all political levels, from intergovernmental to local.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.