One potential consequence of sexual size dimorphism is conflict among characters. For example, a structure evolved for reproduction can impair performance during other activities (e.g., locomotion). Here we provide quantitative evidence for an animal overcoming an evolutionary conflict generated by differential scaling and sexual size dimorphism by obligatorily removing an undamaged reproductive organ, and thus dramatically enhancing its locomotor performance. The spider genus Tidarren (Araneae, Theridiidae) is interesting because, within several species presenting extreme sexual size dimorphism (males representing Ϸ1% of the total mass of the female), males voluntarily remove one of their two disproportionately large pedipalps (modified copulatory organs; a single one represents Ϸ10% of the body mass in an adult) before achieving sexual maturity. Whether the left or right pedipalp is removed appears to be random. Previous researchers have hypothesized that pedipalp removal might enhance locomotor performance, a prediction that has remained untested. We found that, for male Tidarren sisyphoides, maximum speed increased (44%) significantly and endurance increased (63%) significantly after pedipalp removal. Furthermore, spiders with one pedipalp moved Ϸ300% greater distances before exhaustion and had a higher survival after exertion than those with two pedipalps. Removal of the pedipalp may have evolved in male Tidarren because of enhanced abilities to search for females (higher endurance and survival after exertion) and to out-compete rival males on the female's web (higher maximum speed). Our data also highlight how the evolution of conflicts can result in the evolution of a novel behavior.A central tenet of optimality theory is that natural selection will optimize structure and performance resulting in an overall highly fit organism (1, 2). Many studies, however, have shown that the evolution of high performance in one task can lead to decreased performance during another task (e.g., refs. 3-5). In extreme cases of such apparent conflicts, a structure evolved for one activity can substantially impair performance during another activity. For example, Darwin (6) described how sexual selection for sex differences might lead to such functional conflicts, particularly in males. He depicted how the relatively elaborate feathers in some male birds result in enhanced reproductive success via female mate choice, yet also reduces or constrains flight capacities, thus potentially making the animal more susceptible to predators (7). A relatively unexplored area is how organisms cope with these constraints imposed by factors such as sexual selection, natural selection, or allometry. One view of constraints is that they limit or hinder morphological or behavioral change, but another possibility is that constraints can result in a novel phenotype or behavior (8, 9). For example, as plethodontid salamanders undergo evolutionary miniaturization (become smaller), they shift from a terrestrial to an arboreal lifestyle (10). This ...