Background Classification algorithms assign observations to groups based on patterns in data. The machine-learning community have developed myriad classification algorithms, which are used in diverse life science research domains. Algorithm choice can affect classification accuracy dramatically, so it is crucial that researchers optimize the choice of which algorithm(s) to apply in a given research domain on the basis of empirical evidence. In benchmark studies, multiple algorithms are applied to multiple datasets, and the researcher examines overall trends. In addition, the researcher may evaluate multiple hyperparameter combinations for each algorithm and use feature selection to reduce data dimensionality. Although software implementations of classification algorithms are widely available, robust benchmark comparisons are difficult to perform when researchers wish to compare algorithms that span multiple software packages. Programming interfaces, data formats, and evaluation procedures differ across software packages; and dependency conflicts may arise during installation. Findings To address these challenges, we created ShinyLearner, an open-source project for integrating machine-learning packages into software containers. ShinyLearner provides a uniform interface for performing classification, irrespective of the library that implements each algorithm, thus facilitating benchmark comparisons. In addition, ShinyLearner enables researchers to optimize hyperparameters and select features via nested cross-validation; it tracks all nested operations and generates output files that make these steps transparent. ShinyLearner includes a Web interface to help users more easily construct the commands necessary to perform benchmark comparisons. ShinyLearner is freely available at https://github.com/srp33/ShinyLearner. Conclusions This software is a resource to researchers who wish to benchmark multiple classification or feature-selection algorithms on a given dataset. We hope it will serve as example of combining the benefits of software containerization with a user-friendly approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.