Prenylation is a post-translational modification essential for the proper localization and function of many proteins. Farnesylation, the attachment of a 15-carbon farnesyl group near the C-terminus of protein substrates, is catalyzed by protein farnesyltransferase (FTase). Farnesylation has received significant interest as a target for pharmaceutical development and farnesyltransferase inhibitors (FTIs) are in clinical trials as cancer therapeutics. However, as the total complement of prenylated proteins is unknown, the FTase substrates responsible for FTI efficacy are not yet understood. Identifying novel prenylated proteins within the human proteome constitutes an important step towards understanding prenylation-dependent cellular processes. Based on sequence preferences for FTase derived from analysis of known farnesylated proteins, we selected and screened a library of small peptides representing the C-termini of 213 human proteins for activity with FTase. We identified 77 novel FTase substrates that exhibit multiple-turnover reactivity within this library; our library also contained 85 peptides that can be farnesylated by FTase only under singleturnover conditions. Based on these results, a second library was designed that yielded an additional 29 novel multiple-turnover FTase substrates and 45 single-turnover substrates. The two classes of substrates exhibit different specificity requirements. Efficient multiple-turnover reactivity correlates with the presence of a nonpolar amino acid at the a 2 position and a Phe, Met, or Gln at the terminal X residue, consistent with the proposed Ca 1 a 2 X sequence model. In contrast, the sequences of the single-turnover substrates vary significantly more at both the a 2 and X residues and are not well-described by current farnesylation algorithms. These results improve the definition of prenyltransferase substrate specificity, test the efficacy of substrate algorithms, and provide valuable information about therapeutic targets. Finally, these data illuminate the potential for in vivo regulation of prenylation through modulation of single-versus multipleturnover peptide reactivity with FTase.
Analysis of the human proteome has identified thousands of unique protein sequences that contain acetylated lysine residues in vivo. These modifications regulate a variety of biological processes and are reversed by the lysine deacetylase (KDAC) family of enzymes. Despite the known prevalence and importance of acetylation, the details of KDAC substrate recognition are not well understood. While several methods have been developed to monitor protein deacetylation, none are particularly suited for identifying enzyme-substrate pairs of label-free substrates across the entire family of lysine deacetylases. Here, we present a fluorescamine-based assay which is more biologically relevant than existing methods and amenable to probing substrate specificity. Using this assay, we evaluated the activity of KDAC8 and other lysine deacetylases, including a sirtuin, for several peptides derived from known acetylated proteins. KDAC8 showed clear preferences for some peptides over others, indicating that the residues immediately surrounding the acetylated lysine play an important role in substrate specificity. Steady-state kinetics suggest that the sequence surrounding the acetylated lysine affects binding affinity and catalytic rate independently. Our results provide direct evidence that potential KDAC8 substrates previously identified through cell based experiments can be directly deacetylated by KDAC8. Conversely, the data from this assay did not correlate well with predictions from previous screens for KDAC8 substrates using less biologically relevant substrates and assay conditions. Combining results from our assay with mass spectrometry-based experiments and cell-based experiments will allow the identification of specific KDAC-substrate pairs and lead to a better understanding of the biological consequences of these interactions.
Lysine acetylation and deacetylation are critical for regulation of many cellular proteins. Despite the importance of this cycle, it is unclear how lysine deacetylase (KDAC) family members discriminate between acetylated proteins to react with a discrete set of substrates. Potential short-range interactions between KDAC8 and a known biologically relevant peptide substrate were identified using molecular dynamics (MD) simulations. Activity assays with a panel of peptides derived from this substrate supported a putative ionic interaction between arginine at the −1 substrate position and KDAC8 D101. Additional assays and MD simulations confirmed this novel interaction, which promotes deacetylation of substrates. Verification that a negatively charged residue at the 101 position is necessary for the ionic interaction and observed reactivity with the substrates was performed using KDAC8 derivatives. Notably, this interaction is specific to KDAC8, as KDAC1 and KDAC6 do not form this interaction and each KDAC has a different specificity profile with the peptide substrates, even though all KDACs could potentially form ionic interactions. When reacted with a panel of putative human KDAC substrates, KDAC8 preferentially deacetylated substrates containing an arginine at the −1 position. KDAC8 D101-R(−1) is a specific enzyme−substrate interaction that begins to explain how KDACs discriminate between potential substrates and how different KDAC family members can react with different subsets of acetylated proteins in cells. This multi-pronged approach will be extended to identify other critical interactions for KDAC8 substrate binding and determine critical interactions for other KDACs.
Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Thousands of potential substrates, acetylated protein sequences, have been identified in mammalian cells. Properly regulated acetylation and deacetylation have been linked to many biological processes, while aberrant KDAC activity has also been linked to numerous diseases. Commercially available peptide substrates that are conjugated to fluorescent dye molecules, such as 7-amino-4-methylcoumarin (AMC), are commonly used to monitor deacetylation in studies addressing both substrate specificity and small molecule modulators of activity. Here, we have compared the activity of several KDACs, representing all major classes of KDACs, with substrates in the presence and absence of AMC as well as peptides for which tryptophan has been substituted for AMC. Our results unequivocally demonstrate that AMC has a significant effect on activity for all KDACs tested. Furthermore, the effect is not consistent across KDACs, neither in nature of the effect nor magnitude, making it impossible to predict the effect of AMC on a particular enzyme-substrate pair. AMC did not affect acetyllysine preference in a multiply acetylated substrate. In contrast, AMC significantly enhanced KDAC6 substrate affinity, greatly reduced Sirt1 activity, eliminated substrate sequence specificity of KDAC4, and had no consistent effect with KDAC8 substrates. These results indicate that profiling of KDAC activity with labeled peptides is unlikely to produce biologically relevant data.
Lysine acetylation is a posttranslational modification that occurs on thousands of human proteins, most of which are cytoplasmic. Acetylated proteins are involved in numerous cellular processes and human diseases. Therefore, how the acetylation/deacetylation cycle is regulated is an important question. Eleven metal‐dependent lysine deacetylases (KDACs) have been identified in human cells. These enzymes, along with the sirtuins, are collectively responsible for reversing lysine acetylation. Despite several large‐scale studies which have characterized the acetylome, relatively few of the specific acetylated residues have been matched to a proposed KDAC for deacetylation. To understand the function of lysine acetylation, and its association with diseases, specific KDAC‐substrate pairs must be identified. Identifying specific substrates of a KDAC is complicated both by the complexity of assaying relevant activity and by the non‐catalytic interactions of KDACs with cellular proteins. Here, we discuss in vitro and cell‐based experimental strategies used to identify KDAC‐substrate pairs and evaluate each for the purpose of directly identifying non‐histone substrates of metal‐dependent KDACs. We propose criteria for a combination of reproducible experimental approaches that are necessary to establish a direct enzymatic relationship. This critical analysis of the literature identifies 108 proposed non‐histone substrate‐KDAC pairs for which direct experimental evidence has been reported. Of these, five pairs can be considered well‐established, while another thirteen pairs have both cell‐based and in vitro evidence but lack independent replication and/or sufficient cell‐based evidence. We present a path forward for evaluating the remaining substrate leads and reliably identifying novel KDAC substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.