Dechlorane (Dec) 602, Dechlorane (Dec) 603, Dechlorane (Dec) 604, and Dechlorane Plus (DP) are flame retardant substitutes for mirex. Dec 602, 603, and 604 were detected in sediment and fish from the Laurentian Great Lakes. Lake Ontario surface sediments had the highest concentrations of Dec 602 and 604 at 6.0 and 4.0 ng/g dry weight, respectively. Temporal analysis of a Lake Ontario sediment core indicates that Dec 602 and 604 trends are similar to DP peaking in the early 1980s. Lake trout and whitefish from Lake Ontario also had the highest concentrations of Dec 602 and 604 at 34 and 1.2 ng/g lipid. Concentrations of Dec 602 were higher than those of DP in all fish samples, indicating that Dec 602 is likely more bioavailable and/or more readily bioaccumulates than DP. Spatial trends for Dec 602 and 604 in sediment and fish indicate that manufacturing plants along the Niagara River upstream of Lake Ontario were important sources of Dec 602 and 604 to the Great Lakes, while Dec 603 in the Great Lakes is likely from atmospheric deposition. The findings of this first report of Dec 602, 603, and 604 in the Laurentian Great Lakes basin suggests further investigation of halogenated norbornene flame retardants in the environment is merited.
Temporal trends and seasonal variation of Dechloranes (Dec) 602, 603, 604, and Chlordene Plus (CP) in Niagara River suspended sediment, a Lake Ontario sediment core, and Lake Ontario lake trout were investigated, with Mirex and Dechlorane Plus (DP) included for comparison. Temporal concentration trends were generally consistent in each of the media for all compounds with the lowest concentrations observed in or after the late 1990s. In Niagara River suspended sediments, all compounds showed seasonal variation over a year with distinct profiles observed. The relative concentration patterns observed were total DP > Mirex > Dec 602 and Dec 604 > Dec 603 > CP in suspended sediments and sediment cores, whereas Mirex was highest in lake trout, followed by Dec 602 and DP. Dec 602 concentrations were 50 to 380 times greater than those of DP in lake trout, indicating Dec 602 has a greater bioaccumulation potential. The estimated biota-sediment accumulation factor (BSAF) for Dec 602 was much greater than for DP in Lake Ontario, and was greater than those calculated for PBDEs, indicating that assessment of some dechlorane compounds is merited if use is ongoing or planned.
A chlorinated compound (Chlordene Plus, CP), structurally related to Dechloranes (Dec) 602, 603, 604, and Dechlorane Plus (DP), was identified, and concentrations and spatial trends of Dec 602, 603, 604, CP, and DP in tributary sediments of the Laurentian Great Lakes are reported. The dechloranes were widely detected with their concentrations varying considerably across the Great Lakes basin. Spatial trends of Dec 602, 604, and DP in Canadian tributary sediments were similar to that of BDE 209, which suggested these flame retardant chemicals in tributaries were associated with industrial and urban areas. The highest concentrations of Dec 602, 604, and DP observed in tributaries of the Niagara River confirmed that past or ongoing manufacturing of these compounds at plants along the river were important sources to Lake Ontario. Dec 603 was detected in technical products of aldrin and dieldrin, and its spatial trend was consistent with historic pesticide usage. Similarly, CP was detected in technical products of chlordene and chlordane, and it was found in higher concentrations in sediments near urban areas, possibly related to past chlordane use in home termite control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.