Natural Language Understanding has seen an increasing number of publications in the last years, especially after robust word embedding models became popular. These models gained a special place in the spotlight when they proved themselves able to capture and represent semantic relations underneath huge amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Multi-sense word embeddings were devised to alleviate these and other problems by representing each word-sense separately, but studies in this area are still in its infancy and much can be explored. We follow this scenario by proposing an unsupervised technique that disambiguates and annotates words by their specific sense, considering their context influence. These are later used to train a word embeddings model to produce a more accurate vector representation. We test our approach in 6 different benchmarks for the word similarity task, showing that our approach can sustain good results and often outperforms current state-of-the-art systems.
Research on academic integrity has identified online paraphrasing tools as a severe threat to the effectiveness of plagiarism detection systems. To enable the automated identification of machineparaphrased text, we make three contributions. First, we evaluate the effectiveness of six prominent word embedding models in combination with five classifiers for distinguishing human-written from machine-paraphrased text. The best performing classification approach achieves an accuracy of 99.0% for documents and 83.4% for paragraphs. Second, we show that the best approach outperforms human experts and established plagiarism detection systems for these classification tasks. Third, we provide a Web application that uses the best performing classification approach to indicate whether a text underwent machine-paraphrasing. The data and code of our study are openly available.
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F 1 -score of 0.804, outperforming existing methods.
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity approach for research papers. Paper citations indicate the aspect-based similarity, i. e., the title of a section in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. According to our results, SciBERT is the best performing system with F1-scores of up to 0.83. A qualitative analysis validates our quantitative results and indicates that aspect-based document similarity indeed leads to more fine-grained recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.