An accidental radiological release or the operation of a radiological dispersal device (RDD) may lead to the contamination of a large area. Such scenarios may lead to health and safety risks associated with the resuspension of contaminated particles due to aeolian (wind-induced) soil erosion and tracking activities. Stabilization technologies limiting resuspension are therefore needed to avoid spreading contamination and to reduce exposures to first responders and decontamination workers. Resuspension testing was performed on soils from two sites of the Negev Desert following treatment with three different stabilization materials: calcium chloride, magnesium chloride, and saltwater from the Dead Sea in Israel. Two and six weeks post-treatment, resuspension was examined by inducing wind-driven resuspension and quantitatively measuring particle emission from the soils using a boundary-layer wind tunnel system. Experiments were conducted under typical wind velocities of this region. Treating the soils reduced resuspension fluxes of particulate matter < 10 µm (PM10) and saltating (sand-sized) particles to around background levels. Resuspension suppression efficiencies from the treated soils were a minimum of 94% for all three stabilizers, and the Dead Sea salt solution yielded 100% efficiency over all wind velocities tested. The impact of the salt solutions (brine) was directly related to the salt treatment rather than the wetting of the soils. Stabilization was still observed six weeks post-treatment, supporting that this technique can effectively limit resuspension for a prolonged duration, allowing sufficient time for decision making and management of further actions.
The application of stabilization technologies to a radiologically contaminated surface has the potential for reducing the spread of contamination and, as a result, decreasing worker exposure to radiation. Three stabilization technologies, calcium chloride (CaCl2), flame retardant Phos-Chek® MVP-Fx, and Soil2OTM were investigated to evaluate their ability to reduce the resuspension and tracking of radiological contamination during response activities such as vehicle and foot traffic. Concrete pavers, asphalt pavers, and sandy soil walking paths were used as test surfaces, along with simulated fallout material (SFM) tagged with radiostrontium (Sr-85) applied as the contaminant. Radiological activities were measured using gamma spectrometry before and after simulated vehicle operation and foot traffic experiments, conducted with each stabilization technology and without application as a nonstabilized control. These measurements were acquired separately for each combination of surface and vehicle/foot traffic experiment. The resulting data describes the extent of SFM removed from each surface onto the tires or boots, the extent of SFM transferred to adjacent surfaces, and the residual SFM remaining on the tires or boots after each experiment. The type of surface and response worker actions influenced the stabilization results. For instance, when walked over, less than 2% of particles were removed from nonstabilized concrete, 4% from asphalt, and 40% of the particles were removed from the sand surface. By contrast, for vehicle experiments, ~40% of particles were again removed from the sand, but 7% and 15% from concrete and asphalt, respectively. In most cases, the stabilization technologies did provide improved stabilization. The improvement was related to the type of surface, worker actions, and stabilizer; a statistical analysis of these variables is presented. Overall, the results suggest an ability to utilize these technologies during the planning and implementation of response activities involving foot and vehicle traffic. In addition, resuspension of aerosolizable range SFM was monitored during walking path foot traffic experiments, and all stabilizing agents decreased the measured radioactivity, with the Soil2OTM decrease being 3 fold, whereas the CaCl2 and Phos-Chek MVP-Fx surfaces generated no detectable radioactivity. Overall, these results suggest that the stabilization technologies decrease the availability of particles respirable by response workers under these conditions.
One of the preparation steps for a possible radiological attack, is the capability of fast and effective decontamination of critical infrastructures. This study describes the implementation of a test plan at an intermediate scale (between bench scale and large scale or wide area) to evaluate decontamination procedures, materials, technologies, and techniques for removal of radioactive material from various surfaces. Two radioisotopes were tested: cesium-137 ( 137 Cs) and the short-lived simulant to 137 Cs, rubidium-86 ( 86 Rb).Two types of decontamination hydrogel products were evaluated: DeconGel TM and Argonne SuperGel. Tests were conducted at the assigned Chemical, Biological, Radiological, and Nuclear (CBRN) Israel Defense Forces (IDF) Home Front Command facility, and at the Nuclear Research Center Negev (NRCN), Israel. Results from these tests indicated similar removal and operational parameters for 86 Rb and 137 Cs, as expected from the chemical similarity of both elements. These results proved that the short-lived radioisotope 86 Rb can be used in future experiments to simulate 137 Cs. Results and conclusions from these experiments are presented and compared to results from laboratoryscale experiments performed on small coupons. In general, both hydrogel decontaminationproducts may be used as a viable option to decontaminate large surfaces in a real-world event, removing between 30-90% of the contamination, depending on the surface type and porosity. However, both products may leave behind absorbed contamination, that will need to be addressed at a later stage. Yet, the likelihood of resuspension through use of these products is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.