While convolutional neural networks (CNNs) have been successfully applied to many challenging classification applications, they typically require large datasets for training. When the availability of labeled data is limited, data augmentation is a critical preprocessing step for CNNs. However, data augmentation for wearable sensor data has not been deeply investigated yet.In this paper, various data augmentation methods for wearable sensor data are proposed. The proposed methods and CNNs are applied to the classification of the motor state of Parkinson's Disease patients, which is challenging due to small dataset size, noisy labels, and large intra-class variability. Appropriate augmentation improves the classification performance from 77.54% to 86.88%.
Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen’s kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.
SUMMARYThe Tangent Bundle Rapidly Exploring Random Tree (TB-RRT) is an algorithm for planning robot motions on curved configuration space manifolds, in which the key idea is to construct random trees not on the manifold itself, but on tangent bundle approximations to the manifold. Curvature-based methods are developed for constructing tangent bundle approximations, and procedures for random node generation and bidirectional tree extension are developed that significantly reduce the number of projections to the manifold. Extensive numerical experiments for a wide range of planning problems demonstrate the computational advantages of the TB-RRT algorithm over existing constrained path planning algorithms.
Abstract-The ability to accurately identify human activities is essential for developing automatic rehabilitation and sports training systems. In this paper, large-scale exercise motion data obtained from a forearm-worn wearable sensor are classified with a convolutional neural network (CNN). Time-series data consisting of accelerometer and orientation measurements are formatted as images, allowing the CNN to automatically extract discriminative features. A comparative study on the effects of image formatting and different CNN architectures is also presented. The best performing configuration classifies 50 gym exercises with 92.1% accuracy.
patients with advanced parkinson's disease regularly experience unstable motor states. objective and reliable monitoring of these fluctuations is an unmet need. We used deep learning to classify motion data from a single wrist-worn iMU sensor recording in unscripted environments. for validation purposes, patients were accompanied by a movement disorder expert, and their motor state was passively evaluated every minute. We acquired a dataset of 8,661 minutes of IMU data from 30 patients, with annotations about the motor state (off,on, DYSKinetic) based on MDS-UpDRS global bradykinesia item and the AIMS upper limb dyskinesia item. Using a 1-minute window size as an input for a convolutional neural network trained on data from a subset of patients, we achieved a three-class balanced accuracy of 0.654 on data from previously unseen subjects. This corresponds to detecting the OFF, ON, or DYSKINETIC motor state at a sensitivity/specificity of 0.64/0.89, 0.67/0.67 and 0.64/0.89, respectively. on average, the model outputs were highly correlated with the annotation on a per subject scale (r = 0.83/0.84; p < 0.0001), and sustained so for the highly resolved time windows of 1 minute (r = 0.64/0.70; p < 0.0001). Thus, we demonstrate the feasibility of long-term motor-state detection in a free-living setting with deep learning using motion data from a single iMU. Parkinson's disease (PD) is characterized by slowness of movement, decremented small amplitude, and loss of movement spontaneity that are dramatically relieved when dopamine is orally restituted 1. Due to the pharmacokinetic properties of the main medication, i.e. L-DOPA, motor fluctuations may occur and complicate the symptomatic treatment 2-4. Troughs in dopaminergic therapy are accompanied by parkinsonistic phases, so-called OFF-states, while peaks can lead to phases with excessive (hyperkinetic) spontaneous movements, the dyskinetic (DYS), or ON + motor state 5. Ideally, patients with PD (PwP) experience neither OFF nor dyskinetic motor states but maintain a state resembling normal motor function, i.e. the ON state. These motor fluctuations are a major limiting factor for patients' quality of life, especially in later disease stages 6. Consequently, therapeutic innovations have to demonstrate superiority in terms of their ability to reduce motor fluctuations in order to be licensed by health agencies e.g. 7-9. The current standard for assessing motor fluctuations relies on patient self-reporting in the form of diaries (e.g. 10), or expert ratings using standardized scales (e.g. 11 , see 12 for a review). Both approaches have their merits. But they are prone to rater bias and placebo effects, and they can capture the motor state only with coarse temporal resolutions 13,14. In the past, clinically relevant features in motion data has been extracted to quantify motor states of PwP over long periods of time in free-living setups 15-17. Those approaches were not capable of a dynamic detection of typical motion patterns and failed, for example, when the sensor data we...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.