IMPORTANCE Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating adverse effect of neurotoxic cancer treatments including taxanes and platinum agents. Limited knowledge exists of potential prechemotherapy factors associated with CIPN development. OBJECTIVE To identify the association of pretreatment blood-based and clinical factors with CIPN persistence in patients who received paclitaxel or oxaliplatin. DESIGN, SETTING, AND PARTICIPANTS This cohort study assessed pretreatment blood-based clinical factors and demographic characteristics of 333 patients treated with paclitaxel and oxaliplatin chemotherapy at urban multicenter cancer clinics and academic institutions in Australia between September 2015 and February 2020. Comprehensive neuropathy assessments were undertaken 3 to 12 months posttreatment. Posttreatment CIPN severity was compared with blood-based factors within 30 days prior to commencing chemotherapy. Data were analyzed between March and December 2020. EXPOSURES Paclitaxel or oxaliplatin chemotherapy. MAIN OUTCOMES AND MEASURES CIPN was measured using composite neurological grading scales, nerve conduction studies, and assessments of fine motor skills (grooved pegboard test), sensory function (grating orientation test and 2-point discrimination), and patient-reported outcomes. Independent samples t tests and Mann-Whitney U tests with post hoc Bonferroni correction were used to compare CIPN between patients according to blood-based factor normative ranges. Linear regression was used to identify blood-based and clinical associations with CIPN development. RESULTS The study included 333 participants (266 [79.9%] women; median [interquartile range] age, 58 [18] years) who were consecutively recruited and referred (228 treated with paclitaxel, 105
Fine motor control is achieved through the coordinated activation of groups of muscles, or “muscle synergies.” Muscle synergies change after stroke as a consequence of the motor deficit. We investigated the pattern and longitudinal changes in upper limb muscle synergies during therapy in a largely unconstrained movement in patients with a broad spectrum of poststroke residual voluntary motor capacity. Electromyography (EMG) was recorded using wireless telemetry from 6 muscles acting on the more-affected upper body in 24 stroke patients at early and late therapy during formal Wii-based Movement Therapy (WMT) sessions, and in a subset of 13 patients at 6-month follow-up. Patients were classified with low, moderate, or high motor-function. The Wii-baseball swing was analyzed using a non-negative matrix factorization (NMF) algorithm to extract muscle synergies from EMG recordings based on the temporal activation of each synergy and the contribution of each muscle to a synergy. Motor-function was clinically assessed immediately pre- and post-therapy and at 6-month follow-up using the Wolf Motor Function Test, upper limb motor Fugl-Meyer Assessment, and Motor Activity Log Quality of Movement scale. Clinical assessments and game performance demonstrated improved motor-function for all patients at post-therapy (p < 0.01), and these improvements were sustained at 6-month follow-up (p > 0.05). NMF analysis revealed fewer muscle synergies (mean ± SE) for patients with low motor-function (3.38 ± 0.2) than those with high motor-function (4.00 ± 0.3) at early therapy (p = 0.036) with an association trend between the number of synergies and the level of motor-function. By late therapy, there was no significant change between groups, although there was a pattern of increase for those with low motor-function over time. The variability accounted for demonstrated differences with motor-function level (p < 0.05) but not time. Cluster analysis of the pooled synergies highlighted the therapy-induced change in muscle activation. Muscle synergies could be identified for all patients during therapy activities. These results show less complexity and more co-activation in the muscle activation for patients with low motor-function as a higher number of muscle synergies reflects greater movement complexity and task-related phasic muscle activation. The increased number of synergies and changes within synergies by late-therapy suggests improved motor control and movement quality with more distinct phases of movement.
BackgroundPersistent motor impairment is common but highly heterogeneous poststroke. Genetic polymorphisms, including those identified on the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.ObjectiveTo determine whether BDNF and APOE genotypes influence motor improvement facilitated by poststroke upper-limb rehabilitation.MethodsBDNF-Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2–123 months poststroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor function was assessed pre- and post-therapy using a suite of functional measures.ResultsMotor function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor function at baseline, or following the intervention. However, a significant interaction between the level of residual motor function and BDNF genotype was identified (p = 0.029), whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor function. There was no significant association between APOE genotype and therapy outcomes.ConclusionThis study identified a novel interaction between the BDNF-Val66Met polymorphism, motor-function status, and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher, but not lower residual motor function. BDNF genotype should be considered in the design and interpretation of clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.