The analysis for optimal design of an air-cooled internal combustion engine cooling fin array by using genetic algorithms (GA) is presented in this study. Genetic Algorithms are robust, stochastic search techniques which are also used for optimizing highly complex problems. In this study, the fin array is of the traditional circular fin type, which is subject to ambient convective heat transfer. The parameters (degrees of freedom) selected for the analysis include the cylinder wall thickness-to-radius ratio, fin thickness, fin length, the number of fins, and the local heat transfer coefficient. By using a single objective GA procedure, the heat transfer through the fin arrays is set as the objective function to be optimized with each parameter varied within the physical ranges. Proper population size is selected and the mutations, cross-over and selection are conducted in the GA procedure to arrive at the optimal set of parameters after a certain number of generations. The GA proves to be an effective optimization method in the thermal system component designs when the number of independent variables is large.
Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.
The exact calculation of the added resistance in waves is a seakeeping problem of high interest due to economic effect on ship exploitation. In this paper an open uniform B-spline based method is developed to calculate added resistance. Initially this method applied to calculate velocity potential and Kochin functions that are necessary for calculation of the added resistance by Kashiwagi’s formula. For this purpose the source strength and potential are distributed over body surface and described Open-uniform B-spline basic function. Computations are performed for different hull forms then results are validated by comparing them with practical results. The present method shows a good agreement in contrast to published results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.