Fatty acid synthesis in the central nervous system is implicated in the control of food intake and energy expenditure. An intermediate in this pathway, malonyl-CoA, mediates these effects. Malonyl-CoA is an established inhibitor of carnitine palmitoyltransferase-1 (CPT1), an outer mitochondrial membrane enzyme that controls entry of fatty acids into mitochondria and, thereby, fatty acid oxidation. CPT1c, a brain-specific enzyme with high sequence similarity to CPT1a (liver) and CPT1b (muscle) was recently discovered. All three CPTs bind malonyl-CoA, and CPT1a and CPT1b catalyze acyl transfer from various fatty acyl-CoAs to carnitine, whereas CPT1c does not. These findings suggest that CPT1c has a unique function or activation mechanism. We produced a targeted mouse knockout (KO) of CPT1c to investigate its role in energy homeostasis. CPT1c KO mice have lower body weight and food intake, which is consistent with a role as an energy-sensing malonyl-CoA target. Paradoxically, CPT1c KO mice fed a high-fat diet are more susceptible to obesity, suggesting that CPT1c is protective against the effects of fat feeding. CPT1c KO mice also exhibit decreased rates of fatty acid oxidation, which may contribute to their increased susceptibility to diet-induced obesity. These findings indicate that CPT1c is necessary for the regulation of energy homeostasis.acetyl-CoA carboxylase ͉ fatty acid synthase ͉ food intake ͉ malonyl-CoA ͉ obesity B ody weight is maintained by regulating food intake and energy expenditure. This balance is monitored by the central nervous system (CNS) in response to cytokine and endocrine signals, including leptin, ghrelin, obestatin, insulin, cholecystokinin, and peptide YY secreted by peripheral tissues. Concomitantly, parallel pathways in the CNS regulate energy balance by monitoring the availability of neuronal energy-rich metabolic substrates. Integration of these signals occurs in the hypothalamus and, ultimately, in higher brain centers where feeding behavior and energy expenditure are adjusted. Two primary indicators of energy surplus, glucose and fatty acids, are also monitored by subsets of hypothalamic neurons that modulate feeding behavior and energy expenditure (1). Fatty acids (2) and de novo fatty acid synthesis from glucose (3) are known to mediate these effects. Indeed, food intake and body weight have been shown to be altered by manipulating the activities of the enzymes involved in fatty acid synthesis, e.g., fatty acid synthase (FAS) (3), malonyl-CoA decarboxylase (4, 5), acetyl-CoA carboxylase (ACC) (6, 7), stearoyl-CoA desaturase (8, 9), and 5Ј-AMP kinase (10, 11).Inhibition of FAS in the CNS, for example, reduces body weight by rapidly provoking a reduction in food intake and an increase in peripheral energy expenditure (3,12). This inhibition can reverse the weight gain caused by diet-induced obesity (13,14) or mutations in leptin (ob͞ob) or its receptor (db͞db) (3, 15), suggesting that it acts independently of STAT3, which is known to be essential for leptin 's action (16, 17). I...
Excessive hepatic glucose production through the gluconeogenesis pathway is partially responsible for the elevated glucose levels observed in patients with type 2 diabetes mellitus (T2DM). The forkhead transcription factor forkhead box O1 (Foxo1) plays a crucial role in mediating the effect of insulin on hepatic gluconeogenesis. Here, using a db/db mouse model, we demonstrate the effectiveness of Foxo1 inhibitor, an orally active small-molecule compound, as a therapeutic drug for treating T2DM. Using mass spectrometric affinity screening, we discovered a series of compounds that bind to Foxo1, identifying among them the compound, 5-amino-7-(cyclohexylamino)-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (AS1842856), which potently inhibits human Foxo1 transactivation and reduces glucose production through the inhibition of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase mRNA levels in a rat hepatic cell line. Oral administration of AS1842856 to diabetic db/db mice led to a drastic decrease in fasting plasma glucose level via the inhibition of hepatic gluconeogenic genes, whereas administration to normal mice had no effect on the fasting plasma glucose level. Treatment with AS1842856 also suppressed an increase in plasma glucose level caused by pyruvate injection in both normal and db/db mice. Taken together, these findings indicate that the Foxo1 inhibitor represents a new class of drugs for use in treating T2DM.
The fatty acid synthase inhibitor, C75, acts centrally to reduce food intake and body weight in mice. Here we report the effects of C75 on the expression of key orexigenic [neuropeptide Y (NPY), agoutirelated protein (AgRP), and melanin-concentrating hormone] and anorexigenic [pro-opiomelanocortin (POMC) and cocaine-amphetamine-related transcript (CART)] neuropeptide messages in the hypothalami of lean and obese (ob͞ob) mice. In lean mice, C75 rapidly and almost completely blocked food intake and prevented fasting-induced up-regulation of hypothalamic AgRP and NPY mRNAs, as well as down-regulation of CART and POMC mRNAs. Thus, in lean mice C75 seems to interrupt the fasting-induced signals that activate expression of NPY and AgRP and suppression of POMC and CART. In obese mice, C75 rapidly suppressed food intake, reduced body weight, and normalized obesity-associated hyperglycemia and hyperinsulinemia. Like its effect in lean mice, C75 prevented the fasting-induced increase of hypothalamic NPY and AgRP mRNAs in obese mice, but had no effect on the expression of POMC and CART mRNAs. The suppressive effect of C75 on food intake in lean mice seems to be mediated both by NPY͞AgRP and POMC͞CART neurons, whereas in obese mice the effect seems to be mediated primarily by NPY͞AgRP neurons. In both lean and obese mice, C75 markedly increased expression of melaninconcentrating hormone and its receptor in the hypothalamus.AgRP ͉ CART ͉ MCH ͉ NYP ͉ POMC E nergy balance is monitored by the hypothalamus, which responds to peripheral status signals by releasing neuropeptides that regulate energy intake and expenditure. Neuropeptide Y (NPY) and agouti-related protein (AgRP) (orexigenic neuropeptides) and pro-opiomelanocortin (POMC) and cocaine-amphetamine-related transcript (CART) (anorexigenic neuropeptides) produced by the arcuate nucleus of the hypothalamus play important roles in this regulation (1). Recent studies have shown that fatty acid synthase (FAS) inhibitors (notably cerulenin and C75) act centrally, apparently in the hypothalamus, to down-regulate fasting-induced expression of NPY, inhibit food intake, and cause profound weight loss in obese and lean mice (2). These and other findings, including the fact that NPY administered intracerebroventricularly reversed C75-induced inhibition of food intake, suggest that the site of inhibition lies up-stream of NPY.Cerulenin and C75 have caused the accumulation of malonylCoA, the substrate for FAS, in several readily accessible tissues, notably the liver (2, 3). Moreover, a precedent exists for the role of malonyl-CoA as a mediator of energy status in these tissue contexts (4). Considerable circumstantial evidence (2) supports the hypothesis that an increased malonyl-CoA level in the hypothalamus, caused by inhibition of FAS, is responsible for blocking fasting-induced up-regulation of hypothalamic NPY. The purpose of this investigation was to determine whether the FAS inhibitor, C75, affects the expression of other hypothalamic neuropeptides that are known to function in t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.