Metal-free, metal-like lustrous films may find applications in a variety of fields, and a study of the factors affecting their stability is highly desirable. In particular, chemical events occurring in the coating solutions might affect the supramolecular organization of the films and therefore the metal-like luster. Herein, the chemical events occurring in acetonitrile and nitromethane coating solutions of oligo(3-methoxythiophene) and their effect on the optical properties of the films were investigated by X-ray diffraction, UV-vis absorption, and viscosity measurements. In acetonitrile, the oligomers underwent gradual dedoping with time, but only small changes in viscosity were observed. The solution was applied to a glass plate to yield a dark brown film, which turned into a goldlike lustrous film by rubbing. In nitromethane, the supramolecular structure of the oligomers changed with time from the nonaggregated state to π-dimers and then to π-stacks, and the viscosity increased. The properties of the goldlike films prepared from this solution were greatly affected by this chemical event. Remarkably, the π-dimer solution provided the film with the highest specular reflectance, yellowness, greenness, brightness, and crystallinity.
Solution-cast coating films of perchlorate-doped oligo(3-methoxythiophene) exhibited a gold-like luster similar to that of metallic gold despite the involvement of no metals. However, the development mechanism of the luster remains ambiguous. To understand the mechanism, we performed scanning electron microscopic analysis, variable-angle spectral reflectance measurements, and ellipsometry measurements on ClO4−-doped oligo(3-methoxythiophene) cast film with a gold-like luster. The results revealed that the lustrous color of the film was not induced by the submicron-sized regular structures (structural color), nor by the high-density free electrons (reflective response based on Drude model), but by the large optical constants (refractive index and extinction coefficient) of the film, as speculated previously.
Rubbing and pressing of blackish-brown 3-methoxythiophene powder produced layers and tablets with gold tone luster, respectively, due to increased edge-on lamellar crystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.