Mechanisms underlying global changes in gene expression during tumour progression are poorly understood. SATB1 is a genome organizer that tethers multiple genomic loci and recruits chromatin-remodelling enzymes to regulate chromatin structure and gene expression. Here we show that SATB1 is expressed by aggressive breast cancer cells and its expression level has high prognostic significance (P < 0.0001), independent of lymph-node status. RNA-interference-mediated knockdown of SATB1 in highly aggressive (MDA-MB-231) cancer cells altered the expression of >1,000 genes, reversing tumorigenesis by restoring breast-like acinar polarity and inhibiting tumour growth and metastasis in vivo. Conversely, ectopic SATB1 expression in non-aggressive (SKBR3) cells led to gene expression patterns consistent with aggressive-tumour phenotypes, acquiring metastatic activity in vivo. SATB1 delineates specific epigenetic modifications at target gene loci, directly upregulating metastasis-associated genes while downregulating tumour-suppressor genes. SATB1 reprogrammes chromatin organization and the transcription profiles of breast tumours to promote growth and metastasis; this is a new mechanism of tumour progression.
email terumiks@lbl.gov 2 SUMMARY SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region.Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatinremodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.