The potential for damage caused by a light source can be minimized using our new endoscope, which results in safer and less invasive procedures. Further studies are under way to develop a nonilluminated endoscope without a light cable or source and to miniaturize the camera to decrease costs and improve the maneuverability of the entire endoscope system.
A new detector system for protein crystallography is now being developed based on an X-ray HARP-FEA (high-gain avalanche rushing amorphous photoconductor-field emitter array), which consists of an amorphous selenium membrane and a matrix field emitter array. The combination of the membrane avalanche effect with a single driven FEA has several advantages over currently available area detectors, including higher sensitivity, higher spatial resolution and a higher frame rate. Preliminary evaluation of the detector has been carried out and its effectiveness has been confirmed. Next, diffraction images were measured with continuous rotation of a protein crystal, and the images were compared with those measured by the existing CCD detector; the system successfully obtained high-spatial-resolution images. Using shutterless measurement, the total measurement time can be reduced significantly, making the method appropriate for high-throughput protein crystallography. The X-ray HARP-FEA detector is an attractive candidate for the next generation of X-ray area detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.