Endotoxins of Gram-negative microbes fulfill as components of the outer membrane a vital function for bacterial viability and, if set free, induce in mammalians potent pathophysiological effects. Chemically, they are lipopolysaccharides (LPS) consisting of an O-specific chain, a core oligosaccharide, and a lipid component, termed lipid A. The latter determines the endotoxic activities and, together with the core constituent Kdo, essential functions for bacteria. The primary structure of lipid A of various bacterial origin has been elucidated and lipid A of Escherichia coli has been chemically synthesized. The biological analysis of synthetic lipid A partial structures proved that the expression of endotoxic activity depends on a unique primary structure and a peculiar endotoxic conformation. The biological lipid A effects are mediated by macrophage-derived bioactive peptides such as tumor necrosis factor alpha (TNF). Macrophages possess LPS receptors, and the lipid A regions involved in specific binding and cell activation have been characterized. Synthetic lipid A partial structures compete the specific binding of LPS or lipid A and antagonistically inhibit the production of LPS-induced TNF. LPS toxicity, in general, and the ability of LPS to induce TNF are also suppressed by a recently developed monoclonal antibody (IgG2a), which is directed against an epitope located in the core oligosaccharide. At present we determine molecular and submolecular details of the specificity of the interaction of lipid A with responsive host cells with the ultimate aim to provide pharmacological or immunological therapeutics that reduce or abolish the fatal inflammatory consequences of endotoxicosis.
Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of TLR2. However, we previously demonstrated that LTA fraction prepared from bacterial cells contains lipoproteins, which activate cells via TLR2. In this study, we investigated the immunobiological activity of LTA fraction obtained from S. aureus wild-type strain, lipoprotein diacylglycerol transferase deletion (Δlgt) mutant, which lacks palmitate-labeled lipoproteins, and its complemented strain and evaluated the activity of LTA molecule. LTA fraction was prepared by butanol extraction of the bacteria followed by hydrophobic interaction chromatography. Although all LTA fractions activated cells through TLR2, the LTA from Δlgt mutant was 100-fold less potent than those of wild-type and complemented strains. However, no significant structural difference in LTA was observed in NMR spectra. Further, alanylation of LTA molecule showed no effect in immunobiological activity. These results showed that not LTA molecule but lipoproteins are dominant immunobiologically active TLR2 ligand in S. aureus.
The gut epithelium self-renews every several days, providing an important innate defense system that limits bacterial colonization. Nevertheless, many bacterial pathogens, including Shigella, efficiently colonize the intestinal epithelium. Here, we show that the Shigella effector IpaB, when delivered into epithelial cells, causes cell-cycle arrest by targeting Mad2L2, an anaphase-promoting complex/cyclosome (APC) inhibitor. Cyclin B1 ubiquitination assays revealed that APC undergoes unscheduled activation due to IpaB interaction with the APC inhibitor Mad2L2. Synchronized HeLa cells infected with Shigella failed to accumulate Cyclin B1, Cdc20, and Plk1, causing cell-cycle arrest at the G2/M phase in an IpaB/Mad2L2-dependent manner. IpaB/Mad2L2-dependent cell-cycle arrest by Shigella infection was also demonstrated in rabbit intestinal crypt progenitors, and the IpaB-mediated arrest contributed to efficient colonization of the host cells. These results strongly indicate that Shigella employ special tactics to influence epithelial renewal in order to promote bacterial colonization of intestinal epithelium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.