During neonatal respiratory support, maintaining optimal humidity minimizes the risk of airway occlusion and chronic lung disease. With neonatal respiratory support using a heated humidifier,condensation following decreases in temperature within the unheated part of the inspiratory circuit represents a serious problem, due to the resulting drop in absolute humidity. Several reports describing the temperature/humidity gradient in the unheated inspiratory limb have excluded the endotracheal tube (ETT). The present study investigated the extent to which the temperature gradient in the ETT affects breathing gas conditioning in premature infants, who display tiny minute volumes. By measuring temperature/dew point at various sites along the inspiratory circuit, including inside the ETT, we evaluated the effects of temperature change in the ETT using an in vitro model of a micropremie on mechanical respirator care in an incubator. We confirmed significant moisture loss (absolute humidity loss; 7.5-10.1 mg/L) with decreasing gas temperature in the ETT external to the body, with subsequent drying of the gas (relative humidity drop, 10.7-22.3%) as temperature increased in the ETT inside the body. The present results suggest that temperature decreases in the ETT represent an important issue in the respiratory care of very premature infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.