Non-invasive brain–computer interfaces (BCIs) based on common electroencephalography (EEG) are limited to specific instrumentation sites and frequency bands. These BCI induce certain targeted electroencephalographic features of cognitive tasks, identify them, and determine BCI's performance, and use machine-learning to extract these electroencephalographic features, which makes them enormously time-consuming. In addition, there is a problem in which the neurorehabilitation using BCI cannot receive ambulatory and immediate rehabilitation training. Therefore, we proposed an exploratory BCI that did not limit the targeted electroencephalographic features. This system did not determine the electroencephalographic features in advance, determined the frequency bands and measurement sites appropriate for detecting electroencephalographic features based on their target movements, measured the electroencephalogram, created each rule (template) with only large “High” or small “Low” electroencephalograms for arbitrarily determined thresholds (classification of cognitive tasks in the imaginary state of moving the feet by the size of the area constituted by the power spectrum of the EEG in each frequency band), and successfully detected the movement intention by detecting the electroencephalogram consistent with the rules during motor tasks using a fuzzy inference-based template matching method (FTM). However, the electroencephalographic features acquired by this BCI are not known, and their usefulness for patients with actual cerebral infarction is not known. Therefore, this study clarifies the electroencephalographic features captured by the heuristic BCI, as well as clarifies the effectiveness and challenges of this system by its application to patients with cerebral infarction.
Neurorehabilitation using a brain–computer interface (BCI) requires machine learning, for which calculations take a long time, even days. However, the demands of actual rehabilitation are becoming increasingly rigorous, requiring that processes be completed within tens of minutes. Therefore, we developed a new effective rehabilitation system for treating patients such as those with stroke hemiplegia. The system can smoothly perform rehabilitation training on the day of admission to the hospital. We designed a heuristic BCI with simplified fuzzy reasoning, which can detect motor intention signals from an electroencephalogram (EEG) within several tens of minutes. The detected signal is sent to the newly developed ankle rehabilitation device (ARD), and the patient repeats the dorsiflexion motion by the ARD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.