4-Oxalomesaconate hydratase from Pseudomonas ochraceae NGJ1 is unstable in the absence of reducing reagents such as dithiothreitol, and strongly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). To study the role of cysteine residues in enzyme catalysis, the eight individual cysteine residues of the enzyme were replaced with serine residues by site-directed mutagenesis. The catalytic properties and chemical modification of wild- and mutant type-enzymes by DTNB showed that (i) none of eight cysteine residues was essential for enzyme catalysis; (ii) the inhibition by DTNB was mostly due to modification of Cys-186; (iii) Cys-96 might be another residue reacting with DTNB, and its modification caused an increase in the K(m)-value for 4-oxalomesaconate; (iv) the other six cysteine residues were inaccessible to DTNB, but susceptible to HgCl(2); and (v) only replacement of Cys-186 remarkably improved the stability of the enzyme in the absence of reducing reagent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.