Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Background-Marfan syndrome (MS) is a genetic disorder caused by a mutation in the fibrillin gene FBN1. Bicuspid aortic valve (BAV) is a congenital heart malformation of unknown cause. Both conditions are associated with ascending aortic aneurysm and premature death. This study examined the relationship among the secretion of extracellular matrix proteins fibrillin, fibronectin, tenascin, and vascular smooth muscle cell (VSMC) apoptosis. The role of matrix metalloproteinase (MMP)-2 in VSMC apoptosis was studied in MS aneurysm. Methods and Results-Aneurysm tissue was obtained from patients undergoing surgery (MS: 4 M, 1 F, age 27-45 years;BAV: 3 M, 2 F, age 28 -65 years). Normal aorta from subjects with nonaneurysm disease was also collected (4 M, 1 F, age 23-93 years). MS and BAV aneurysm histology showed areas of cystic medial necrosis (CMN) without inflammatory infiltrate. Immunohistochemical study of cultured MS and BAV VSMC showed intracellular accumulation and reduction of extracellular distribution of fibrillin, fibronectin, and tenascin. Western blot showed no increase in expression of fibrillin, fibronectin, or tenascin in MS or BAV VSMC and increased expression of MMP-2 in MS VSMCs.There was 4-fold increase in loss of cultured VSMC incubated in serum-free medium for 24 hours in both MS (27Ϯ8%) and BAV (32Ϯ14%) compared with control (7Ϯ5%). Conclusions-In
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.