In many data sets, information on the structure and temporality of a system coexists with noise and non-essential elements. In networked systems for instance, some edges might be non-essential or exist only by chance. Filtering them out and extracting a set of relevant connections is a non-trivial task. Moreover, mehods put forward until now do not deal with time-resolved network data, which have become increasingly available. Here we develop a method for filtering temporal network data, by defining an adequate temporal null model that allows us to identify pairs of nodes having more interactions than expected given their activities: the significant ties. Moreover, our method can assign a significance to complex structures such as triads of simultaneous interactions, an impossible task for methods based on static representations. Our results hint at ways to represent temporal networks for use in data-driven models.
The global financial system can be represented as a large complex network in which banks, hedge funds and other financial institutions are interconnected to each other through visible and invisible financial linkages. Recently, a lot of attention has been paid to the understanding of the mechanisms that can lead to a breakdown of this network. This can happen when the existing financial links turn from being a means of risk diversification to channels for the propagation of risk across financial institutions. In this review article, we summarize recent developments in the modeling of financial systemic risk. We focus, in particular, on network approaches, such as models of default cascades due to bilateral exposures or to overlapping portfolios, and we also report on recent findings on the empirical structure of interbank networks. The current review provides a landscape of the newly arising interdisciplinary field lying at the intersection of several disciplines, such as network science, physics, engineering, economics, and ecology.
The seniority of debt, which determines the order in which a bankrupt institution repays its debts, is an important and sometimes contentious feature of financial crises, yet its impact on systemwide stability is not well understood. We capture seniority of debt in a multiplex network, a graph of nodes connected by multiple types of edges. Here an edge between banks denotes a debt contract of a certain level of seniority. Next we study cascading default. There exist multiple kinds of bankruptcy, indexed by the highest level of seniority at which a bank cannot repay all its debts. Self-interested banks would prefer that all their loans be made at the most senior level. However, mixing debts of different seniority levels makes the system more stable in that it shrinks the set of network densities for which bankruptcies spread widely. We compute the optimal ratio of senior to junior debts, which we call the optimal seniority ratio, for two uncorrelated Erdős-Rényi networks. If institutions erode their buffer against insolvency, then this optimal seniority ratio rises; in other words, if default thresholds fall, then more loans should be senior. We generalize the analytical results to arbitrarily many levels of seniority and to heavy-tailed degree distributions.
The global financial crisis in [2007][2008][2009] demonstrated that systemic risk can spread all over the world through a complex web of financial linkages, yet we still lack fundamental knowledge about the evolution of the financial web. In particular, interbank credit networks shape the core of the financial system, in which a time-varying interconnected risk emerges from a massive number of temporal transactions between banks. The current lack of understanding of the mechanics of interbank networks makes it difficult to evaluate and control systemic risk. Here, we uncover fundamental dynamics of interbank networks by seeking the patterns of daily transactions between individual banks. We find stable interaction patterns between banks from which distinctive network-scale dynamics emerge. In fact, the dynamical patterns discovered at the local and network scales share common characteristics with social communication patterns of humans. To explain the origin of "social" dynamics in interbank networks, we provide a simple model that allows us to generate a sequence of synthetic daily networks characterized by the observed dynamical properties. The discovery of dynamical principles at the daily resolution will enhance our ability to assess systemic risk and could contribute to the real-time management of financial stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.