Aims In humans, genetic variation in endocannabinergic signaling has been associated with anthropometric measures of obesity. In randomized trials, pharmacological blockade at the level of the cannabinoid receptor 1 (CNR1) receptor not only facilitates weight reduction, but also improves insulin sensitivity and clinical measures of lipid homeostasis. We therefore tested the hypothesis that genetic variation in CNR1 is associated with common obesity-related metabolic disorders. Materials & methods A total of six haplotype tagging SNPs were selected for CNR1, using data available within the Human HapMap (Centre d’Etude du Polymorphisme Humain population) these included: two promoter SNPs, three exonic SNPs, and a single SNP within the 3′-untranslated region. These tags were then genotyped in a rigorously phenotyped family-based collection of obese study subjects of Northern European origin. Results & conclusions A common CNR1 haplotype (H4; prevalence 0.132) is associated with abnormal lipid homeostasis. Additional statistical tests using single tagging SNPs revealed that these associations are partly independent of body mass index.
Neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) work closely with leptin and insulin to fine-tune the metabolic and neuroendocrine responses to dietary intake. Losing the sensitivity to excess food intake can lead to obesity, diabetes, and a multitude of behavioral disorders. It is largely unclear how different serotonin receptor subtypes respond to and integrate metabolic signals and which genetic variations in these receptor genes lead to individual differences in susceptibility to metabolic disorders. In an obese cohort of families of Northern European descent (n = 2,209), the serotonin type 5A receptor gene, HTR5A, was identified as a prominent factor affecting plasma levels of triglycerides (TG), supported by our data from both genome-wide linkage and targeted association analyses using 28 publicly available and 12 newly discovered single nucleotide polymorphisms (SNPs), of which 3 were strongly associated with plasma TG levels (P < 0.00125). Bayesian quantitative trait nucleotide (BQTN) analysis identified a putative causal promoter SNP (rs3734967) with substantial posterior probability (P = 0.59). Functional analysis of rs3734967 by electrophoretic mobility shift assay (EMSA) showed distinct binding patterns of the two alleles of this SNP with nuclear proteins from glioma cell lines. In conclusion, sequence variants in HTR5A are strongly associated with high plasma levels of TG in a Northern European population, suggesting a novel role of the serotonin receptor system in humans. This suggests a potential brain-specific regulation of plasma TG levels, possibly by alteration of the expression of HTR5A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.