The study was conducted to evaluate reproductive performances and estimate genetic parameters for reproduction traits in Arsi-Bale goats. A total of 792 kidding records collected from 2001 to 2007 were used. Parity of dam, year, season and type of kidding were investigated as fixed effects by PROC GLM of SAS. Derivative-Free Restricted Maximum Likelihood (DFREML) method was used to estimate genetic parameters by fitting four animal models. Parity of dam and year of kidding influenced (P < 0.05) all the traits. The overall means for age at first kidding (AFK), kidding interval (KI), litter size at birth (LSB), litter size at weaning (LSW), litter weight at birth (LWB), litter weight at weaning (LWW), abortion and dystocia were 574.9 ± 8.3 days, 280.0 ± 13.7 days, 1.6 ± 0.03, 1.37 ± 0.03, 3.7 ± 0.08 kg, 9.11 ± 0.38 kg, 3.8% and 0.13%, respectively. The estimates of direct additive heritability for the traits, except for abortion and dystocia, under the best model (direct animal for AFK and repeatability model for other traits) were 0.245 ± 0.19, 0.060 ± 0.08, 0.074 ± 0.05, 0.006 ± 0.05, 0.125 ± 0.05, 0.053 ± 0.07, respectively, while the corresponding permanent environmental effects were 0.00 ± 0.00, 0.07 ± 0.07, 0.08 ± 0.05, 0.172 ± 0.06, 0.03 ± 0.04 and 0.07 ± 0.05, respectively. Repeatability estimates for KI, LSB, LSW, LWB and LWW were 0.13, 0.15, 0.18, 0.16 and 0.12, respectively. Genetic correlations between reproductive traits vary from medium to high. Arsi-Bale goats have good reproductive performance with low incidence of reproductive disorder. Except for AFK, other traits have low estimates of heritabilities with high genetic correlation among the traits. Repeated measures of the traits are needed before deciding to keep or cull the animal.
Objective: Finger millet blast disease caused by Pyricularia grisea (Magnaporthe grisea) causes significant yield loss in Ethiopia. This study was conducted to isolate, identify and characterize the pathogen (using morphological, physiological and biochemical methods). Methodology and results: A total of 42 P. grisea isolates from five different finger millet producing regions of Ethiopia were collected from diseased finger millet plants and wild relatives. Based on their geographical distribution, virulence and comparative growth on culture media, only six isolates were selected for further indepth study. The morphological and physiological variability studies of the six isolates were carried out on Host Seed Extract + 2% Sucrose Agar, Oat Meal Agar, Potato Dextrose Agar and Richard's Agar culture Media at varying temperature, pH, carbon and nitrogen sources. Each of the isolated P. grisea showed consistently better growth on Oat Meal Agar than other media. The isolates showed considerable variation in mycelial growth, pigmentation and conidia production in culture. Oat meal agar and Richard Agar media showed maximum mycelial growth with 87.3mm and 88.2mm by isolates of Pg 41 and Pg 26, respectively. Based on temperature preference and pH requirement, the isolates of P. grisea showed maximum mycelial growth of 61.4mm and 423.3mg at 30°C and pH 6.5. The isolates of P. grisea showed ability to metabolize a wide range of carbon and nitrogen sources among which dextrose and NaNO3 were the most suitable carbon and nitrogen sources for mycelial growth of all isolates. The variations in the utilization of the various carbon and nitrogen compounds seem to reflect inherent biochemical and physiological differences among P. grisea isolates. Conclusion and applications: Basic data on finger millet blast pathogen diversity and characterization using morphological, physiological and biochemical methods has been conducted. The results of this study help to understand the physiological and biochemical requirements for the growth and development of the pathogen, which could serve as an input in disease management to minimize the effect of blast disease on finger millet and its wild relatives.
Agro-industrial wastes suitable for economical and high mass production of novel Trichoderma species under solid-state fermentation were identified by optimizing the culture conditions using a mathematical model and evaluating the viability of the formulated bio-product. Fourteen inexpensive, locally available, organic substrates and cereals were examined using a one-factor-at-a-time experiment. The fungus colonized nearly all substrates after 21 days of incubation, although the degree of colonization and conidiation varied among the substrates. A mixture of wheat bran and white rice (2:1 w/w) was found to support maximum growth of T. asperellum AU131 (3.2 × 107 spores/g dry substrate) and T. longibrachiatum AU158 (3.5 × 107 spores/g dry substrate). Using a fractional factorial design, the most significant growth factors influencing biomass production were found to be temperature, moisture content, inoculum concentration, and incubation period (p ≤ 0.05). Analysis of variance of a Box–Behnken design showed that the regression model was highly significant (p ≤ 0.05) with F-values of 10.38 (P = 0.0027, T. asperellum AU131) and 12.01 (p < 0.0017, T. longibrachiatum AU158). Under optimal conditions, maximum conidia yield of log10 (8.6) (T. asperellum AU131) and log10(9.18) (T. longibrachiatum) were obtained. For wettable powder Trichoderma species formulations, it was possible to maintain conidial viability at room temperature (25 °C) for eight months at concentrations above 106 CFU/g.
Background Faba bean (Vicia faba L.) cultivation is highly challenged by faba bean black root rot disease (Fusarium solani) in high lands of Ethiopia. To ensure sustainable production of faba beans, searching for eco-friendly disease management options is necessary to curb the progress of the disease timely. The indigenous biocontrol agents that suit local environments may effectively strive with in-situ microorganisms and suppress local pathogen strains. This study aimed to screen antagonistic indigenous compatible Trichoderma and Pseudomonas strains against Fusarium solani. In the pathogenicity test, soil-filled pots were arranged in complete random block design and sown with health faba bean seeds. The effect of some fungicides was evaluated against Fusarium by food poisoning methods to compare with the biocontrol agents. The antagonistic efficacy of biocontrol agents and their compatibility was investigated on Potato dextrose agar medium. Results Fusarium solani AAUF51 strain caused an intense root rotting in faba bean plant. The effect of Mancozeb 80% WP at 300 ppm was comparable with Trichoderma and Pseudomonas strains against Fusarium. The mycelial growth of test the pathogen was significantly (P ≤ 0.05) reduced to 86.67 and 85.19% by Trichoderma harzianum AAUW1 and Trichoderma viridae AAUC22 strains in dual culture, respectively. The volatile metabolites of Pseudomonas aeruginosa AAUS31 (77.78%) found the most efficient in reducing mycelial growth of Fusarium followed by Pseudomonas fluorescens AAUPF62 (71.11%) strains. The cell-free culture filtrates of Pseudomonas fluorescens AAUPF62 and Pseudomonas aeruginosa AAUS31 were more efficient than the Trichoderma strain in reducing the growth of Fusarium isolates. There was no zone of inhibition recorded between Trichoderma harzianum AAUW1, Trichoderma viridae AAUC22, Pseudomonas aeruginosa AAUS31, and Pseudomonas fluorescens AAUPF62 strains, hence they were mutually compatible. Conclusions The compatible Trichoderma and Pseudomonas strains showed antagonistic potentiality that could be explored for faba bean protection against black root rot disease and might have a future dual application as biocontrol agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.