Although large and sparse linear systems can be solved using iterative methods, its number of iterations is relatively large. In this case, we need to modify the existing methods in order to get approximate solutions in a small number of iterations. In this paper, the modified method called second-refinement of Gauss-Seidel method for solving linear system of equations is proposed. The main aim of this study was to minimize the number of iterations, spectral radius and to increase rate of convergence. The method can also be used to solve differential equations where the problem is transformed to system of linear equations with coefficient matrices that are strictly diagonally dominant matrices, symmetric positive definite matrices or M-matrices by using finite difference method. As we have seen in theorem 1and we assured that, if A is strictly diagonally dominant matrix, then the modified method converges to the exact solution. Similarly, in theorem 2 and 3 we proved that, if the coefficient matrices are symmetric positive definite or M-matrices, then the modified method converges. And moreover in theorem 4 we observed that, the convergence of second-refinement of Gauss-Seidel method is faster than Gauss-Seidel and refinement of Gauss-Seidel methods. As indicated in the examples, we demonstrated the efficiency of second-refinement of Gauss-Seidel method better than Gauss-Seidel and refinement of Gauss-Seidel methods.
Abstract. In this paper, a Second degree generalized Jacobi Iteration method for solving system of linear equations, Ax = b and discuss about the optimal values a 1 and b 1 in terms of spectral radius about for the convergence of SDGJ method of. Few numerical examples are considered to show that the effective of the Second degree Generalized Jacobi Iteration method (SDGJ) in comparison with FDJ, FDGJ, SDJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.