Understanding the mechanism of Li nucleation and growth is essential for providing long cycle life and safe lithium ion batteries or lithium metal batteries. However, no quantitative report on Li metal deposition is available, to the best of our knowledge. We propose a model for quantitatively understanding the Li nucleation and growth mechanism associated with the solid−electrolyte interphase (SEI) formation, which we name the Li-SEI model. The current transients at various overpotentials initiate the nucleation and growth of Li metal on bare Cu foil. The Li-SEI model considering a three-dimensional diffusion-controlled instantaneous process (J 3D-DC ) with the simultaneous reduction of electrolyte decomposition (J SEI ) due to the SEI fracture is employed for investigating the Li nucleation and growth mechanism. The individual contributions of experimental and theoretical transient states, i.e., the fundamental kinetic values of diffusion coefficient (D), rate of nucleation (N 0 ), and rate constant of electrolyte decomposition (k SEI ), can be determined from the Li-SEI model. Interestingly, J SEI increases with time, indicating that the current contributing from the electrolyte decomposition increases with time due to the SEI fracture upon Li deposition. Meanwhile, the k SEI increases with overpotential, indicating the SEI fracture is more serious at higher overpotential or higher growth rate. The k SEI is smaller in the electrolyte with fluoroethylene carbonate (FEC) additive, indicating that FEC additive can significantly suppress the SEI fracture during Li metal deposition. This proposed model opens a new way to quantitatively understand the Li nucleation and growth mechanism and electrolyte decomposition on various substrates or in different electrolytes.
Anode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation. In this work, we present an integrated protocol combining different types of cell configuration to determine various sources of irreversible coulombic efficiency in anode-free lithium metal cells. The decrypted information from the protocol provides an insightful understanding of the behaviors of LMBs and AFLMBs, which promotes their development for practical applications.
Currently, concentrated electrolyte solutions are attracting special attention because of their unique characteristics such as unusually improved oxidative stability on both the cathode and anode sides, the absence of free solvent, the presence of more anion content, and the improved availability of Li + ions. Most of the concentrated electrolytes reported are lithium bis(fluorosulfonyl)imide (LiFSI) salt with ether-based solvents because of the high solubility of salts in ether-based solvents. However, their poor anti-oxidation capability hindered their application especially with high potential cathode materials (>4.0 V). In addition, the salt is very costly, so it is not feasible from the cost analysis point of view. Therefore, here we report a locally concentrated electrolyte, 2 M LiPF 6 , in ethylene carbonate/diethyl carbonate (1:1 v/v ratio) diluted with fluoroethylene carbonate (FEC), which is stable within a wide potential range (2.5−4.5 V). It shows significant improvement in cycling stability of lithium with an average Coulombic efficiency (ACE) of ∼98% and small voltage hysteresis (∼30 mV) with a current density of 0.2 mA/cm 2 for over 1066 h in Li||Cu cells. Furthermore, we ascertained the compatibility of the electrolyte for anode-free Li−metal batteries (AFLMBs) using Cu||LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC, ∼2 mA h/ cm 2 ) with a current density of 0.2 mA/cm 2 . It shows stable cyclic performance with ACE of 97.8 and 40% retention capacity at the 50th cycle, which is the best result reported for carbonate-based solvents with AFLMBs. However, the commercial carbonate-based electrolyte has <90% ACE and even cannot proceed more than 15 cycles with retention capacity >40%. The enhanced cycle life and well retained in capacity of the locally concentrated electrolyte is mainly because of the synergetic effect of FEC as the diluent to increase the ionic conductivity and form stable anion-derived solid electrolyte interphase. The locally concentrated electrolyte also shows high robustness to the effect of upper limit cutoff voltage.
Li7La3Zr2O12 (LLZO) garnet is one kind of solid electrolyte drawing extensive attention due to its good ionic conductivity, safety, and stability toward lithium metal anodes. However, the stability problem during synthesis and storage results in high interfacial resistance and prevents it from practical applications. We synthesized air-stable dual-doped Li6.05La3Ga0.3Zr1.95Nb0.05O12 ((Ga, Nb)-LLZO) cubic-phase garnets with ionic conductivity of 9.28 × 10–3 S cm–1. The impurity-phase species formation on the garnet pellets after air exposure was investigated. LiOH and Li2CO3 can be observed on the garnet pellets by Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) once the garnets are exposed to humid air or come in contact with water. The (Ga, Nb)-LLZO garnet is found to form less LiOH and Li2CO3, which can be further reduced or removed after drying treatment. To confirm the stability of the garnet, an electrochemical test of the Li//Li symmetric cell was also performed in comparison with previously reported garnets (Li7La2.75Ca0.25Zr1.75Nb0.25O12, (Ca, Nb)-LLZO). The dual-doped (Ga, Nb)-LLZO showed less polarized and stable plating/stripping behavior than (Ca, Nb)-LLZO. Through Rietveld refinement of XRD patterns of prepared materials, dopant Ga was found to preferably occupy the Li site and Nb takes the Zr site, while dopant Ca mainly substituted La in the reference sample. The inherited properties of the dopants in (Ga, Nb)-LLZO and their structural synergy explain the greatly improved air stability and reduced interfacial resistance. This may open a new direction to realize garnet-based solid electrolytes with lower interfacial resistance and superior air stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.