Long non-coding RNAs (lncRNAs), a class of non-coding transcripts, have recently been emerging with heterogeneous molecular actions, adding a new layer of complexity to generegulation networks in tumorigenesis. LncRNAs are considered important factors in several ovarian cancer histotypes, although few have been identified and characterized. Owing to their complexity and the lack of adapted molecular technology, the roles of most lncRNAs remain mysterious. Some lncRNAs have been reported to play functional roles in ovarian cancer and can be used as classifiers for personalized medicine. The intrinsic features of lncRNAs govern their various molecular mechanisms and provide a wide range of platforms to design different therapeutic strategies for treating cancer at a particular stage. Although we are only beginning to understand the functions of lncRNAs and their interactions with microRNAs (miRNAs) and proteins, the expanding literature indicates that lncRNA-miRNA interactions could be useful biomarkers and therapeutic targets for ovarian cancer. In this review, we discuss the genetic variants of lncRNAs, heterogeneous mechanisms of actions of lncRNAs in ovarian cancer tumorigenesis, and drug resistance. We also highlight the recent developments in using lncRNAs as potential prognostic and diagnostic biomarkers. Lastly, we discuss potential approaches for linking lncRNAs to future gene therapies, and highlight future directions in the field of ovarian cancer research.
Our understanding of the post-transcriptional mechanisms involved in follicular atresia is limited; however, an important development has been made in understanding the biological regulatory networks responsible for mediating follicular atresia. MicroRNAs have come to be seen as a key regulatory actor in determining cell fate in a wide range of tissues in normal and pathological processes. Profiling studies of miRNAs during follicular atresia and development have identified several putative miRNAs enriched in apoptosis signaling pathways. Subsequent in vitro and/or in vivo studies of granulosa cells have elucidated the functional role of some miRNAs along with their molecular pathways. In particular, the regulatory roles of some miRNAs have been consistently observed during studies of follicular cellular apoptosis. Continued work should gradually lead to better understanding of the role of miRNAs in this field. Ultimately, we expect this understanding will have substantial benefits for fertility management at both the in vivo or/and in vitro levels. The stable nature of miRNA holds remarkable promise in clinical use as a diagnostic tool and in reproductive medicine to solve the ever-increasing fertility problem. In this review, we summarize current knowledge of the involvement of miRNAs in follicular atresia, discuss the challenges for further work and pinpoint areas for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.