DNA fragmentation can be deleterious on spermatozoon morphology but the pathogenesis of teratozoospermia associated with DNA breaks is not fully understood, even if oxidative attacks and defects in chromatin maturation are hypothesized. Therefore, this study is one of the first to clarify on the underlying hypothesizes behind such observations. The objectives of our study were to assess the role of oxidative attacks in DNA damage pathogenesis in ejaculated spermatozoa from patients with isolated teratozoospermia. We aimed to assess the correlation of DNA breaks with morphologically abnormal spermatozoa, as well as ROS level and impairment chromatin condensation. A total of 90 patients were divided into two groups, men with isolated teratozoospermia (n = 60) and men with normal semen parameters (n = 30) as controls. DNA fragmentation was evaluated by TUNEL assay; chromatin immaturity was studied using acridine orange and toluidine blue staining. We evaluated the ability of spermatozoa to produce reactive oxygen species with nitro blue tetrazolium staining. Patient with teratozoospermia when compared to fertile men showed significantly higher rates of semen ROS production, sperm hypocondensated chromatin, denaturated DNA, and fragmented DNA. All these parameters were positively correlated with abnormal sperm morphology. The studied DNA integrity markers were also correlated with ROS production. Fragmented DNA is the main pathway leading to morphology defects in the sperm. In fact, impaired chromatin compaction may induce DNA breaks and free radicals, which can break the DNA backbone indirectly, by reducing protamination and disulphide bond formation, as oxidative attack appears to be the major cause of poor semen morphology.
Primary infertility affects approximately 15% of couples, with male factor infertility accounting for 50% of cases. Semen samples from 41 patients with asthenoteratospermia and 28 men with proven fertility were analysed according to World Health Organization guidelines. Abnormal sperm chromatin structure was assessed by toluidine blue assay (TBA), and DNA denaturation (DD) was detected by the acridine orange test (AOT). The mean (±SEM) rates of DD and abnormal chromatin structure were significantly higher in infertile subjects compared to fertile group respectively p = .003 and p < .001. A significant correlation was established between sperm DD and abnormal chromatin structure (R = .431, p < .001). Sperm DNA damage correlated significantly with abnormal morphology, sperm motility and necrozoospermia. Our study shows that men with increased levels of abnormal sperm chromatin structure have a high incidence of DNA denaturation and altered semen parameters. These findings suggest that male infertility has been linked to sperm DNA damage.
The aim of this study was to assess the total antioxidant capacity (TAC) and malondialdehyde (MDA) level in infertile men with asthenozoospermia and asthenoteratozoospermia compared to fertile donors, and to examine the effect of zinc on sperm lipid peroxidation and antioxidant status in infertile and fertile men. Semen samples provided by infertile men (n = 38) and fertile donors (controls; n = 12) were exposed to 6 mmol/L of zinc for 2 hr at 37°C. After semen analysis, lipid peroxidation was detected by MDA assay and seminal TAC was assessed by colorimetric method using TAS (total antioxidant status) Kit. TAC was significantly lower in infertile group compared to controls (p = .037). However, lipid peroxidation did not alter in infertile patients compared to controls (p > .05). After in vitro incubation of samples with zinc, a significant increase in TAC level was found only in infertile men (p < .001). Meanwhile, zinc had no effect on sperm lipid peroxidation in both fertile and infertile men (p > .05). Our data indicate that antioxidant treatment based on zinc in vitro supplementation may be helpful to enhance the rate of seminal antioxidant status in infertile men; however, it does not prevent sperm lipid peroxidation.
Objective Density gradient centrifugation (DGC) is commonly used for sperm preparation before assisted reproductive technology (ART) procedures. This technique separates superior motile spermatozoa with normal morphology from the total sperm population. However, there is still controversy as to the effects of this sperm separation technique on sperm cell DNA integrity which is a determining element in the process of fertilization and embryonic development. The objective of this study was to determine the effects of DGC on sperm cell DNA integrity as assessed by a novel association between two cytogenetic tests. Study designs Semen samples were collected from 30 fertile donors and 40 patients being candidates for ART treatment. Each sample was divided into two parts: the first portion was subjected to selection by two layers of DGC (45% and 90%) and the second fraction was rinsed with phosphate-buffered saline solution and centrifuged without density gradient. Abnormal sperm chromatin structure as evaluated by a sperm chromatin dispersion (SCD) test and DNA denaturation as assessed by an acridine orange (AO) test were monitored in the initially washed sample and in the different layers of the density gradient centrifugation. Results DGC significantly improved the proportion of sperm progressive motility, total motility, and sperm morphology. Moreover, following density gradient centrifugation, the proportion of spermatozoa with denaturated DNA significantly decreased when compared with whole semen (p < 0.001). In addition, we found that spermatozoa isolated in the 90% layer possessed a significantly lower percentage of sperm chromatin decondensation when compared with those remaining in the 45% layer and unprocessed semen (p < 0.001). Conclusions Using double cytogenetic tests, our study shows that semen processing by density gradient centrifugation is useful in selecting sperm with higher double-strand DNA integrity and recommended to be used in sperm preparation for assisted reproduction.
Background: Male infertility appears to be a major clinical problem among men of reproductive age in all societies. Idiopathic male infertility is considered to be a multifactorial disorder affected by genetic, environmental, and hormonal factors. Oxidative stress seems to stand out as one of the underlying mechanisms. In this context, we aimed to evaluate seminal plasma antioxidants SOD (superoxide dismutase), GPx (glutathione peroxidase), CAT (catalase) and zinc levels, hormone levels, and semen parameters in fertile donors and patients with unbalanced chromosomal abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.