Objects are fundamental to scene understanding. Scenes are defined by embedded objects and how we interact with them. Paradoxically, scene processing in the brain is typically discussed in contrast to object processing. Using the BOLD5000 dataset (Chang et al., 2019), we examined whether objects within a scene predicted the neural representation of scenes, as measured by functional magnetic resonance imaging in humans. Stimuli included 1,179 unique scenes across 18 semantic categories. Object composition of scenes were compared across scene exemplars in different semantic scene categories, and separately, in exemplars of the same scene category. Neural representations in scene- and object-preferring brain regions were significantly related to which objects were in a scene, with the effect at times stronger in the scene-preferring regions. The object model accounted for more variance when comparing scenes within the same semantic category to scenes from different categories. Here, we demonstrate the function of scene-preferring regions includes the processing of objects. This suggests visual processing regions may be better characterized by the processes, which are engaged when interacting with the stimulus kind, such as processing groups of objects in scenes, or processing a single object in our foreground, rather than the stimulus kind itself.
Objects are fundamental to scene understanding. Scenes are defined by embedded objects and how we interact with them. Paradoxically, scene processing in the brain is typically discussed in contrast to object processing. Using the BOLD5000 dataset (Chang et al., 2019), we examined whether objects within a scene predicted the neural representation of scenes, as measured by fMRI in humans. Stimuli included 1,179 unique scenes across 18 semantic categories. Object composition of scenes were compared across scene exemplars in different semantic categories, and separately, in exemplars of the same category. Neural representations in scene- and object- preferring brain regions were significantly related to which objects were in a scene, with the effect at times stronger in the scene-preferring regions. The object model accounted for more variance when comparing scenes within the same semantic category to scenes from different categories. Thus, the functional role of scene-preferring regions should include the processing of objects. This suggests visual processing regions may be better characterized with respect to which processes are engaged when interacting with the stimulus category, such as processing groups of objects in scenes, or processing a single object in our foreground, rather than the stimulus category itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.