There is a rich repertoire of methods for stress detection using various physiological signals and algorithms. However, there is still a gap in research efforts moving from laboratory studies to real-world settings. A small number of research has verified when a physiological response is a reaction to an extrinsic stimulus of the participant’s environment in real-world settings. Typically, physiological signals are correlated with the spatial characteristics of the physical environment, supported by video records or interviews. The present research aims to bridge the gap between laboratory settings and real-world field studies by introducing a new algorithm that leverages the capabilities of wearable physiological sensors to detect moments of stress (MOS). We propose a rule-based algorithm based on galvanic skin response and skin temperature, combing empirical findings with expert knowledge to ensure transferability between laboratory settings and real-world field studies. To verify our algorithm, we carried out a laboratory experiment to create a “gold standard” of physiological responses to stressors. We validated the algorithm in real-world field studies using a mixed-method approach by spatially correlating the participant’s perceived stress, geo-located questionnaires, and the corresponding real-world situation from the video. Results show that the algorithm detects MOS with 84% accuracy, showing high correlations between measured (by wearable sensors), reported (by questionnaires and eDiary entries), and recorded (by video) stress events. The urban stressors that were identified in the real-world studies originate from traffic congestion, dangerous driving situations, and crowded areas such as tourist attractions. The presented research can enhance stress detection in real life and may thus foster a better understanding of circumstances that bring about physiological stress in humans.
This paper sets out the future potential and challenges for developing an interdisciplinary, mixed-method Citizen Social Science approach to researching urban emotions. It focuses on urban stress, which is increasingly noted as a global mental health challenge facing both urbanised and rapidly urbanising societies. The paper reviews the existing use of mobile psychophysiological or biosensing within urban environments-as means of 'capturing' the urban geographies of emotions. Methodological reflections are included on primary research using biosensing in a study of workplace and commuter stress for university employees in Birmingham (UK) and Salzburg (Austria) for illustrative purposes. In comparing perspectives on the conceptualisation and measurement of urban stress from psychology, neuroscience and urban planning, the difficulties of defining scientific constructs within Citizen Science are discussed to set out the groundwork for fostering interdisciplinary dialogue. The novel methods, geo-located sensor technologies and data-driven approaches to researching urban stress now available to researchers pose a number of ethical, political and conceptual challenges around defining and measuring emotions, stress, human behaviour and urban space. They also raise issues of rigour, participation and social scientific interpretation. Introducing methods informed by more critical Citizen Social Science perspectives can temper overly individualised forms of data collection to establish more effective ways of addressing urban stress and promoting wellbeing in urban communities.
The information, practices and views in this article are those of the author(s) and do not necessarily reflect the opinion of the Royal Geographical Society (with IBG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.