Background Cross-sectional studies suggest that the microbes in the human gut play a role in obesity by influencing the human body’s ability to extract and store calories. The aim of this study was to assess if there is a correlation between change in body weight over time and gut microbiome composition. Methods We analysed 16S rRNA gene sequence data derived from the faecal samples of 1632 healthy females from TwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjusted for caloric intake and baseline BMI). Dietary fibre intake was investigated as a possible modifier. Results Less than half of the variation in long-term weight change was found to be heritable (h2=0.41[0.31,0.47]). Gut microbiota diversity was negatively associated with long-term weight gain, while it was positively correlated with fibre intake. Nine bacterial operational taxonomic units (OTU) were significantly associated with weight gain after adjusting for covariates, family relatedness and multiple testing (FDR<0.05). OTUs associated with lower long term weight gain included those assigned to Ruminococcaceae (associated in mice with improved energy metabolism) and Lachnospiraceae. A Bacterioides species OTU was associated with increased risk of weight gain but this appears to be driven by its correlation with lower levels of diversity. Conclusions High gut microbiome diversity, high fibre intake and OTUs implicated in animal models of improved energy metabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders.
BackgroundVariation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures.ResultsWe profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome and obesity.ConclusionsOur results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with clear potential for prevention and novel therapies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1052-7) contains supplementary material, which is available to authorized users.
Reduced gut microbiome diversity is associated with multiple disorders including metabolic syndrome (MetS) features, though metabolomic markers have not been investigated. Our objective was to identify blood metabolite markers of gut microbiome diversity, and explore their relationship with dietary intake and MetS. We examined associations between Shannon diversity and 292 metabolites profiled by the untargeted metabolomics provider Metabolon Inc. in 1529 females from TwinsUK using linear regressions adjusting for confounders and multiple testing (Bonferroni: P < 1.71 × 10−4). We replicated the top results in an independent sample of 420 individuals as well as discordant identical twin pairs and explored associations with self-reported intakes of 20 food groups. Longitudinal changes in circulating levels of the top metabolite, were examined for their association with food intake at baseline and with MetS at endpoint. Five metabolites were associated with microbiome diversity and replicated in the independent sample. Higher intakes of fruit and whole grains were associated with higher levels of hippurate cross-sectionally and longitudinally. An increasing hippurate trend was associated with reduced odds of having MetS (OR: 0.795[0.082]; P = 0.026). These data add further weight to the key role of the microbiome as a potential mediator of the impact of dietary intake on metabolic status and health.
IntroductionSeveral circulating metabolites derived from bacterial protein fermentation have been found to be inversely associated with renal function but the timing and disease severity is unclear. The aim of this study is to explore the relationship between indoxyl-sulfate, p-cresyl-sulfate, phenylacetylglutamine and gut-microbial profiles in early renal function decline.ResultsIndoxyl-sulfate (Beta(SE) = -2.74(0.24); P = 8.8x10-29), p-cresyl-sulfate (-1.99(0.24), P = 4.6x10-16), and phenylacetylglutamine(-2.73 (0.25), P = 1.2x10-25) were inversely associated with eGFR in a large population base cohort (TwinsUK, n = 4439) with minimal renal function decline. In a sub-sample of 855 individuals, we analysed metabolite associations with 16S gut microbiome profiles (909 profiles, QIIME 1.7.0). Three Operational Taxonomic Units (OTUs) were significantly associated with indoxyl-sulfate and 52 with phenylacetylglutamine after multiple testing; while one OTU was nominally associated with p-cresyl sulfate. All 56 microbial members belong to the order Clostridiales and are represented by anaerobic Gram-positive families Christensenellaceae, Ruminococcaceae and Lachnospiraceae. Within these, three microbes were also associated with eGFR.ConclusionsOur data suggest that indoxyl-sulfate, p-cresyl-sulfate and phenylacetylglutamine are early markers of renal function decline. Changes in the intestinal flora associated with these metabolites are detectable in early kidney disease. Future efforts should dissect this relationship to improve early diagnostics and therapeutics strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.