Follicular regulatory T cells (TFR) have been extensively characterized in mice and participate in germinal center responses by regulating the maturation of B cells and production of (auto)antibodies. We report that circulating TFR are phenotypically distinct from tonsil-derived TFR in humans. They have a lower expression of follicular markers, and display a memory phenotype and lack of high expression of B cell lymphoma 6 and ICOS. However, the suppressive function, expression of regulatory markers, and FOXP3 methylation status of blood TFR is comparable with tonsil-derived TFR. Moreover, we show that circulating TFR frequencies increase after influenza vaccination and correlate with anti-flu Ab responses, indicating a fully functional population. Multiple sclerosis (MS) was used as a model for autoimmune disease to investigate alterations in circulating TFR. MS patients had a significantly lower frequency of circulating TFR compared with healthy control subjects. Furthermore, the circulating TFR compartment of MS patients displayed an increased proportion of Th17-like TFR. Finally, TFR of MS patients had a strongly reduced suppressive function compared with healthy control subjects. We conclude that circulating TFR are a circulating memory population derived from lymphoid resident TFR, making them a valid alternative to investigate alterations in germinal center responses in the context of autoimmune diseases, and TFR impairment is prominent in MS.
Background and objectiveThe long term effects of fingolimod, an oral treatment for relapsing-remitting (RR) multiple sclerosis (MS), on blood circulating B and T cell subtypes in MS patients are not completely understood. This study describes for the first time the longitudinal effects of fingolimod treatment on B and T cell subtypes. Furthermore, expression of surface molecules involved in antigen presentation and costimulation during fingolimod treatment are assessed in MS patients in a 12 month follow-up study.MethodsUsing flow cytometry, B and T cell subtypes, and their expression of antigen presentation, costimulation and migration markers were measured during a 12 month follow-up in the peripheral blood of MS patients. Data of fingolimod-treated MS patients (n = 49) were compared to those from treatment-naive (n = 47) and interferon-treated (n = 27) MS patients.ResultsIn the B cell population, we observed a decrease in the proportion of non class-switched and class-switched memory B cells (p<0.001), both implicated in MS pathogenesis, while the proportion of naive B cells was increased during fingolimod treatment in the peripheral blood (PB) of MS patients (p<0.05). The remaining T cell population, in contrast, showed elevated proportions of memory conventional and regulatory T cells (p<0.01) and declined proportions of naive conventional and regulatory cells (p<0.05). These naive T cell subtypes are main drivers of MS pathogenesis. B cell expression of CD80 and CD86 and programmed death (PD) -1 expression on circulating follicular helper T cells was increased during fingolimod follow-up (p<0.05) pointing to a potentially compensatory mechanism of the remaining circulating lymphocyte subtypes that could provide additional help during normal immune responses.ConclusionsMS patients treated with fingolimod showed a change in PB lymphocyte subtype proportions and expression of functional molecules on T and B cells, suggesting an association with the therapeutic efficacy of fingolimod.
The presence of B lymphocyte–associated oligoclonal immunoglobulins in the cerebrospinal fluid is a classic hallmark of multiple sclerosis (MS). The clinical efficacy of anti-CD20 therapies supports a major role for B lymphocytes in MS development. Although activated oligoclonal populations of pathogenic B lymphocytes are able to traffic between the peripheral circulation and the central nervous system (CNS) in patients with MS, molecular players involved in this migration have not yet been elucidated. In this study, we demonstrated that activated leukocyte cell adhesion molecule (ALCAM/CD166) identifies subsets of proinflammatory B lymphocytes and drives their transmigration across different CNS barriers in mouse and human. We also showcased that blocking ALCAM alleviated disease severity in animals affected by a B cell–dependent form of experimental autoimmune encephalomyelitis. Last, we determined that the proportion of ALCAM+ B lymphocytes was increased in the peripheral blood and within brain lesions of patients with MS. Our findings indicate that restricting access to the CNS by targeting ALCAM on pathogenic B lymphocytes might represent a promising strategy for the development of next-generation B lymphocyte–targeting therapies for the treatment of MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.