Active interrogation (AI) is a promising technique to detect shielded special nuclear materials (SNMs). At the University of Michigan, we are developing a photon-based AI system that uses bremsstrahlung radiation from an electron linear accelerator (linac) as an ionizing source and trans-stilbene organic scintillating detectors for neutron detection. Stilbene scintillators are sensitive to fast neutrons and photons and have excellent pulse shape discrimination (PSD) capabilities. The traditional charge integration (CI) method commonly used for PSD analysis eliminates piled-up pulses and relies on a particle discrimination line to separate neutrons and photons. The presence of the intense photon flux during AI creates a significant number of piled-up events in the stilbene scintillator, thereby posing a great challenge to the traditional CI method. Identifying true single neutron pulses becomes challenging due to the presence of a pile-up cloud and overlapping neutron, photon and pile-up clouds in the PSD analysis. To mitigate the effect of pulse pile-up and identify true single neutron pulses from stilbene scintillators, an artificial neural network (ANN) system is developed. The developed ANN system identifies single neutron pulses and neutron-photon combinations from piled-up events. The results obtained from a 252 Cf measurement in the presence of the intense photon flux show that the developed ANN system outperforms the traditional CI method. Since many piled-up events lie above the particle discrimination line, they get misclassified as neutrons by the traditional CI method resulting in 27% overestimation of the net neutron count rate during the linac pulse. The overall net neutron count rate (single and restored neutrons) during the linac pulse, estimated by the ANN system is 62.32% of the ground truth. Energy spectroscopy of the ANN attributed single neutron pulses further provides evidence on the detection of prompt fission neutrons from the 252 Cf fission source.INDEX TERMS artificial neural network, high photon flux, linac, pile-up recovery, trans-stilbene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.