Parkinson's disease (PD) is usually characterized by cardinal motor impairments. However, a range of non-motor symptoms precede the motor-phase and are major determinants for the quality of life. To date, no disease modifying treatment is available for PD patients. The gold standard therapy of levodopa is based on restoring dopaminergic neurotransmission, thereby alleviating motor symptoms, whereas non-motor symptoms remain undertreated. One of the most common non-motor symptoms is gastrointestinal dysfunction usually associated with alpha-synuclein accumulations and low-grade mucosal inflammation in the enteric nervous system. Accumulating evidence suggest that the enteric nervous system is involved in PD pathological progression towards the central nervous system. Moreover, different components of the gut could provide a central role in the gut-brain axis, which is as a bidirectional communicational system between the gastrointestinal tract and central nervous system. Dietary components might influence the gut-brain axis by altering microbiota composition or by affecting neuronal functioning in both the ENS and the CNS. This review gives a comprehensive overview of the evidences supporting the hypothesis that PD could initiate in the gut. We also consider how food-based therapies might then have an impact on PD pathology and/or improve non-motor as well as motor symptoms in PD.
Development of effective treatment for amyotrophic lateral sclerosis (ALS) has been hampered by disease heterogeneity, a limited understanding of underlying pathophysiology and methodological design challenges. Here we have evaluated two major themes in the design of pivotal, phase 3 clinical trials for ALS: (1) patient selection and (2) analytical strategy, and discussed potential solutions with the European Medicines Agency (EMA). Several design considerations were assessed using data from five placebo-controlled clinical trials (N = 988), four population-based cohorts (N = 5,100), and 2,436 placebo-allocated patients from the PRO-ACT database. The validity of each proposed design modification was confirmed by means of simulation and illustrated for a hypothetical setting. Compared to classical trial design, the proposed design modifications reduce the sample size by 30.5% and placebo exposure time by 35.4%. By making use of prognostic survival models, one creates a potential to include a larger proportion of the population and maximize generalizability. We propose a flexible design framework which naturally adapts the trial duration when inaccurate assumptions are made at the design stage such as the enrollment or survival rate. In case of futility, the follow-up time is shortened and patient exposure to ineffective treatments or placebo is minimized. For diseases such as ALS, optimizing the use of resources, widening eligibility criteria and minimizing the exposure to futile treatments and placebo is critical to the development of effective treatments. Our proposed design modifications could circumvent important pitfalls and may serve a blueprint for future clinical trials in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.