Synesthesia provides an elegant model to investigate neural mechanisms underlying individual differences in subjective experience in humans. In grapheme-color synesthesia, written letters induce color sensations, accompanied by activation of color area V4. Competing hypotheses suggest that enhanced V4 activity during synesthesia is either induced by direct bottom-up cross-activation from grapheme processing areas within the fusiform gyrus, or indirectly via higher-order parietal areas. Synesthetes differ in the way synesthetic color is perceived: "projector" synesthetes experience color externally colocalized with a presented grapheme, whereas "associators" report an internally evoked association. Using dynamic causal modeling for fMRI, we show that V4 cross-activation during synesthesia was induced via a bottom-up pathway (within fusiform gyrus) in projector synesthetes, but via a top-down pathway (via parietal lobe) in associators. These findings show how altered coupling within the same network of active regions leads to differences in subjective experience. Our findings reconcile the two most influential cross-activation accounts of synesthesia.
BackgroundIn synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared.Methodology/Principal FindingsFirst, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas.Conclusions/SignificanceBecause synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
Synaesthesia, a mixing of the senses, is more common in individuals with autism. Here, we review the evidence for the association between synaesthesia and autism with regard to their genetic background, brain connectivity, perception, cognitive mechanisms and their contribution to exceptional talents. Currently, the overlap between synaesthesia and autism is established most convincingly at the level of alterations in sensory sensitivity and perception, with synaesthetes showing autism-like profiles of sensory sensitivity and a bias towards details in perception. Shared features may include a predominance of local over global connectivity in the brain. When autism and synaesthesia co-occur in the same individual, the chance of developing heightened cognitive and memory abilities is increased. We discuss how the same theoretical models could potentially explain both conditions. Given the evidence, we believe the phenotypical overlap between autism and synaesthesia has been established clearly enough to invite future research to confirm overlapping mechanisms.
Eye movements can have serious confounding effects in cognitive neuroscience experiments. Therefore, participants are commonly asked to fixate. Regardless, participants will make so-called fixational eye movements under attempted fixation, which are thought to be necessary to prevent perceptual fading. Neural changes related to these eye movements could potentially explain previously reported neural decoding and neuroimaging results under attempted fixation. In previous work, under attempted fixation and passive viewing, we found no evidence for systematic eye movements. Here, however, we show that participants’ eye movements are systematic under attempted fixation when active viewing is demanded by the task. Since eye movements directly affect early visual cortex activity, commonly used for neural decoding, our findings imply alternative explanations for previously reported results in neural decoding.
We report associations between vowel sounds, graphemes, and colors collected online from over 1,000 Dutch speakers. We also provide open materials, including a Python implementation of the structure measure and code for a single-page web application to run simple cross-modal tasks. We also provide a full dataset of color–vowel associations from 1,164 participants, including over 200 synesthetes identified using consistency measures. Our analysis reveals salient patterns in the cross-modal associations and introduces a novel measure of isomorphism in cross-modal mappings. We found that, while the acoustic features of vowels significantly predict certain mappings (replicating prior work), both vowel phoneme category and grapheme category are even better predictors of color choice. Phoneme category is the best predictor of color choice overall, pointing to the importance of phonological representations in addition to acoustic cues. Generally, high/front vowels are lighter, more green, and more yellow than low/back vowels. Synesthetes respond more strongly on some dimensions, choosing lighter and more yellow colors for high and mid front vowels than do nonsynesthetes. We also present a novel measure of cross-modal mappings adapted from ecology, which uses a simulated distribution of mappings to measure the extent to which participants’ actual mappings are structured isomorphically across modalities. Synesthetes have mappings that tend to be more structured than nonsynesthetes’, and more consistent color choices across trials correlate with higher structure scores. Nevertheless, the large majority (~ 70%) of participants produce structured mappings, indicating that the capacity to make isomorphically structured mappings across distinct modalities is shared to a large extent, even if the exact nature of the mappings varies across individuals. Overall, this novel structure measure suggests a distribution of structured cross-modal association in the population, with synesthetes at one extreme and participants with unstructured associations at the other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.