To cite this article: Kremers RMW, Peters TC, Wagenvoord RJ, Hemker HC. The balance of pro-and anticoagulant processes underlying thrombin generation. J Thromb Haemost 2015; 13: 437-47.Summary. Background: The generation of thrombin in time is the combined effect of the processes of prothrombin conversion and thrombin inactivation. Measurement of prothrombin consumption used to provide valuable information on hemostatic disorders, but is no longer used, due to its elaborate nature. Objectives: Because thrombin generation (TG) curves are easily obtained with modern techniques, we developed a method to extract the prothrombin conversion curve from the TG curve, using a computational model for thrombin inactivation. Methods: Thrombin inactivation was modelled computationally by a reaction scheme with antithrombin, a 2 Macroglobulin and fibrinogen, taking into account the presence of the thrombin substrate ZGGR-AMC used to obtain the experimental data. The model was validated by comparison with data obtained from plasma as well as from a reaction mixture containing the same reactants as plasma. Results: The computational model fitted experimental data within the limits of experimental error. Thrombin inactivation curves were predicted within 2 SD in 96% of healthy subjects. Prothrombin conversion was calculated in 24 healthy subjects and validated by comparison with the experimental consumption of prothrombin during TG. The endogenous thrombin potential (ETP) mainly depends on the total amount of prothrombin converted and the thrombin decay capacity, and the peak height is determined by the maximum prothrombin conversion rate and the thrombin decay capacity. Conclusions: Thrombin inactivation can be accurately predicted by the proposed computational model and prothrombin conversion can be extracted from a TG curve using this computational prediction. This additional computational analysis of TG facilitates the analysis of the process of disturbed TG.
Key Points The rate of prothrombin conversion is elevated in APS patients, causing a hemostatic imbalance. TG and prothrombin conversion are higher in APS patients with prior thrombosis than in patients without thrombosis.
Background: The antiphospholipid syndrome (APS) is characterized by the presence of antiphospholipid antibodies directed mainly against prothrombin and β2-glycoprotein I. The syndrome is associated with an increased risk of thrombosis. The global hemostatic state in a patient can be tested by measuring thrombin generation (TG). Recently, we developed a method to study the main pro- and anticoagulant processes at the basis of TG, called the thrombin dynamics method. Aim: In this study we investigated the dynamics of thrombin generation in healthy subjects and APS patients. Materials and methods: Healthy subjects (n=129) and antiphospholipid syndrome (APS) patients (n=31) were included in the study. Sixty-eight percent of the APS patients were lupus anticoagulant positive, anti-cardiolipin antibodies were detected in 84% of the patients, and 52% presented with anti-β2-glycoprotein I antibodies. Patients on anticoagulant therapy were excluded from the study. Thrombin generation was measured at 1 pM tissue factor (TF) and activated protein C (APC) system sensitivity was tested by measuring TG in the presence and absence of 20 nM thrombomodulin (TM). Results: Thrombin generation was measured in platelet poor plasma at 1 pM tissue factor. The lag time and time-to-peak were significantly prolonged in APS patients compared to healthy subjects (lag time: 3.30 ± 0.59 vs. 6.69 ± 4.26 min, p<0.001; time-to-peak: 8.33 ± 1.29 vs. 10.76 ± 4.51 min, p<0.001). The peak height was significantly higher in APS patients (240 ± 84 vs. 214 ± 58 nM, p<0.05) and the velocity index was elevated in APS patients (134 ± 66 vs. 70 ± 32 nM/min, p<0.001) compared to healthy subjects. The ETP values were comparable between healthy subjects and APS patients (1260 ± 235 vs. 1176 ± 362 nM*min). The pro- and anticoagulant processes underlying thrombin generation were studied separately. The total amount of prothrombin converted during thrombin generation (PCtot) did not differ between healthy subjects and patients (1234 vs. 1165 nM). However, the maximum rate of prothrombin conversion (PCmax) was significantly elevated in APS patients (291 vs 425 nM/min; p<0.001). The amount of thrombin-antithrombin (T-AT) complexes formed was comparable between patients and controls (1169 vs. 1098 nM), and the thrombin decay capacity (TDC) was comparable as well (0.675 vs. 0.674 min-1). These results are in line with the finding that the plasma levels of the main thrombin inhibitors are unchanged in APS patients. Antithrombin levels are on average 2.31 ± 0.44 μM in healthy subjects and 2.36 ± 0.56 μM in APS patients, and the mean α2-macroglobulin levels were 3.22 ± 0.77 μM in healthy subjects and 3.23 ± 1.11 μM in patients. Thrombomodulin reduced the ETP by 45% in healthy subjects, but had significantly less effect in APS patients (10%). The addition of TM decreased total prothrombin conversion by 40% and the maximum prothrombin conversion rate by 50% in healthy subjects. In patients, TM only slightly reduced total prothrombin conversion (8%) and the maximum prothrombin conversion rate (7%). Discussion: The thrombin generation results indicate a predisposition to thrombosis in APS patients, as the TG parameters peak height and the velocity index are increased. Examination of the underlying pro- and anticoagulant processes of prothrombin conversion and thrombin inactivation revealed that although the same amount of prothrombin is converted in patients, the maximum activity of the prothrombinase complex is higher, indicating that patients can generate thrombin faster. In addition, APS patients have a dysfunctional APC system, as prothrombin conversion and thrombin generation could be only slightly inhibited by the addition of thrombomodulin. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.