BackgroundNeuronal ceroid lipofuscinoses (NCLs) comprise at least eight genetically characterized neurodegenerative disorders of childhood. Despite of genetic heterogeneity, the high similarity of clinical symptoms and pathology of different NCL disorders suggest cooperation between different NCL proteins and common mechanisms of pathogenesis. Here, we have studied molecular interactions between NCL proteins, concentrating specifically on the interactions of CLN5, the protein underlying the Finnish variant late infantile form of NCL (vLINCLFin).ResultsWe found that CLN5 interacts with several other NCL proteins namely, CLN1/PPT1, CLN2/TPP1, CLN3, CLN6 and CLN8. Furthermore, analysis of the intracellular targeting of CLN5 together with the interacting NCL proteins revealed that over-expression of PPT1 can facilitate the lysosomal transport of mutated CLN5FinMajor, normally residing in the ER and in the Golgi complex. The significance of the novel interaction between CLN5 and PPT1 was further supported by the finding that CLN5 was also able to bind the F1-ATPase, earlier shown to interact with PPT1.ConclusionWe have described novel interactions between CLN5 and several NCL proteins, suggesting a modifying role for these proteins in the pathogenesis of individual NCL disorders. Among these novel interactions, binding of CLN5 to CLN1/PPT1 is suggested to be the most significant one, since over-expression of PPT1 was shown to influence on the intracellular trafficking of mutated CLN5, and they were shown to share a binding partner outside the NCL protein spectrum.
MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.