Bibliografische Information der Deutschen NationalbibliothekDie Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.de abrufbar.
Universitätsverlag
AbstractWe introduce the notion of coupling distances on the space of Lévy measures in order to quantify rates of convergence towards a limiting Lévy jump diffusion in terms of its characteristic triplet, in particular in terms of the tail of the Lévy measure. The main result yields an estimate of the Wasserstein-Kantorovich-Rubinstein distance on path space between two Lévy diffusions in terms of the couping distances. We want to apply this to obtain precise rates of convergence for Markov chain approximations and a statistical goodness-of-fit test for lowdimensional conceptual climate models with paleoclimatic data.
The notion of the transportation distance on the set of the Lévy measures on ℝ is introduced. A Lévy-type process with a given symbol (state dependent analogue of the characteristic triplet) is proved to be well defined as a strong solution to a stochastic differential equation (SDE) under the assumption of Lipschitz continuity of the Lévy kernel in the symbol w.r.t. the state space variable in the transportation distance. As examples, we construct Gammatype process and-stable like process as strong solutions to SDEs.
Bibliografische Information der Deutschen NationalbibliothekDie Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.
Universitätsverlag
AbstractThis article assesses the distance between the laws of stochastic differential equations with multiplicative Lévy noise on path space in terms of their characteristics. The notion of transportation distance on the set of Lévy kernels introduced by Kosenkova and Kulik yields a natural and statistically tractable upper bound on the noise sensitivity. This extends recent results for the additive case in terms of coupling distances to the multiplicative case. The strength of this notion is shown in a statistical implementation for simulations and the example of a benchmark time series in paleoclimate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.