The La1 − xCaxVO4 and La1 − x − yEuyCaxVO4 (0 ≤ x, y ≤ 0.2) micro/nanosized powders were prepared by aqueous nitrate–citrate sol–gel synthesis. Phase composition of the sample depends on the x and y values. The La0.9Ca0.1VO4 is crystallized in monoclinic structure up to the x = 0.1. The La0.9Eu0.05Ca0.05VO4 sample was also attributed to the monoclinic structure. Increasing concentration of europium and calcium ions in La1 − x − yEuyCaxVO4 solid solutions leads to the change of the crystal structure, and subsequently, stabilization of the tetragonal phase takes place.The obtained samples were characterized by XRD analysis, SEM microscopy, and IR spectroscopy. Luminescence properties of the synthesized powders were studied. Emission of the La1 − xCaxVO4 samples is weak and consists of wide bands in the 450–800 nm spectral range. The observed bands at 570 and 630 were ascribed to electron transitions in the distorted VO4
3− vanadate groups. Emission of the La1 − x − yEuyCaxVO4 samples consists of narrow spectral lines in the 550–730 nm spectral range. The lines are caused by the 5D0 → 7FJ electron transitions in the Eu3+ ions. The Ca2+ ions incorporation increases the intensity of the Eu3+ ions luminescence. Structure of the spectra depends on Ca2+ concentration and excitation wave length. The carried out analysis has revealed that Eu3+ ions form at least two different types of emission centers in the La1 − x − yEuyCaxVO4 samples. The assumption is made that type I centers are formed by the Eu3+ ions in their regular positions in the crystal lattice, while the type II centers have complex structure and consist of Eu3+ ions, Ca2+ cations, and oxygen vacancies.
Luminescence properties of the two series of the La1-xEuxVO4 (x ranges from to 0.3) solid solutions synthesized by the solid state and co-precipitation methods were investigated.. Luminescence spectra of the investigated samples consist of narrow spectral lines caused by inner f - f electron transitions in the impurity Eu3+ ions. Excitation spectra consist of three main bands those correspond to different types of transitions in the investigated matrices. There are O - Eu3+ charge transfer transitions, band-to-band transitions in the matrix of the vanadate compounds and electron transitions in the VO43- vanadate anion. Dependences of the structure and luminescence properties on rate compositions and method of synthesis were studied. Origins of the observed differences between luminescence characteristics of the samples obtained by two different methods are discussed.
The La1‑xEuxVO4 powders were synthesized by co-precipitation method. Emission spectra of the LaEuVO4 and La1‑xEuxVO4 powders consist of wide non-structural bands of the matrix emission and narrow spectral lines caused by inner f-f electron transitions in the Eu3+ ions, respectively. The both types of emission were studied within 8 – 300 K temperature range. Decomposition of spectra of the wide matrix emission on three bands has been carried out and temperature dependencies for each band were studied. Temperature behavior of the Eu3+ emission was investigated for lines assigned to different Eu3+ centres. Obtained dependencies are analyzed and discussed using proposed schemes of transitions in the VO43- groups and structure of the nearest surrounding of the Eu3+ emission centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.