The scope of this paper is to perform a detailed experimental investigation of the shape error effect on the turbulence evolution behind NACA 64-618 airfoil. This airfoil is 3D-printed with predefined typical shape inaccuracies. A high-precision optical 3D scanner was used to assess the shape and surface quality of the manufactured models. The turbulent flow was studied using hot-wire anemometry. The developed force balance device was provided to measure the aerodynamic characteristics of the airfoil. Experimental studies were carried out for three angles of attack, +10∘, 0∘, −10∘, and different chord-based Reynolds numbers from 5.3×104 to 2.1×105. The obtained results show that the blunt trailing edge and rough surface decline the aerodynamic performance of the blades. In addition, the experimental results revealed a strong sensitivity of the Taylor microscale Reynolds number to the type of shape inaccuracy, especially at Re≈1.7×105. We also discuss the evolution of the Reynolds stress components, the degree of flow anisotropy, and the power spectrum distributions depending on the airfoil inaccuracies.
This article describes the influence of thermal material properties on the properties of electrical insulation materials and heat transfer in electrical devices. When increasing performance and decreasing dimensions of electrical equipment the losses grow. It is necessary to search new materials which can fulfill greater demands. Thermal properties of materials are one group of important aspects. By adding filler with good thermal conductivity to a composite can be increased its thermal conductivity. Heat transfer takes place in three ways by conduction, convection and radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.