A gamete lytic enzyme (GLE) of Chlamydomonas reinhardi is a zinc metalloprotease and mediates digestion of the cell walls of the two mating-type gametes during mating as a necessary prelude to cell fusion. The nucleotide sequence analysis of a cDNA revealed that GLE is synthesized in a preproenzyme form, a 638-amino acid polypeptide (Mr, 69,824) with a 28-amino acid signal peptide, a 155-amino acid propolypeptide, and a 455-amino acid mature polypeptide (Mr, 49,633). A potential site for autocatalytic activation was contained within the propolypeptide and a zinc binding site found within the mature polypeptide; both sites were highly homologous to those in mammalian collagenase. A putative calcium binding site was present in the near C-terminal region of the mature GLE. Both propolypeptide and mature polypeptide had potential sites for asparagine-linked glycosylation, and the Arg-(Pro)3 and Arg-(Pro)2 motifs, which are known to exist in hydroxyproline-rich glycoproteins of the Chlamydomonas cell wall. Northern blot analysis revealed that steady-state levels of the 2.4-kilobase GLE mRNA increased during growth and mitotic cell division in the vegetative cell cycle and also increased markedly during gametogenesis under nitrogenstarved conditions.The controlled remodeling and breakdown of the cell's extracellular matrix (ECM) are important in such biological processes as growth, development, fertilization, and cell fusion in both animals and plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.